METHODOLOGY

Green Corridors Feasibility Scoping Phase

Expected outcomes of Feasibility Scoping phase

The Pre-Feasibility phase ended with the core consortium selecting the projects that looked most promising on the basis of the interest and commitment intentions from stakeholders. These projects will now move into the Feasibility phase for further maturation.

In the Feasibility phase, every green corridor project will undergo a rigorous evaluation to determine its technical, regulatory, and economic feasibility. This assessment is crucial as it provides team members with a comprehensive understanding of the potential for CO_2 abatement and associated costs, thereby enabling them to finalize an implementation roadmap and committing further resources to a green corridor project.

To streamline this process, Feasibility methodologies offer project teams guidance in conducting evaluations and fostering collaboration throughout the alternative fuel supply value chain.

The scoping phase outlined here emphasizes the structure of the project: forming a consortium, defining the scope of work, and establishing formal project descriptions and legal terms in the Project Commitment Letter (PCL).

When these steps are complete, the project will transition from the scoping phase to the study phase. The project team will have a clear direction and framework for the project. This minimizes the risks of undertaking the project and maximizing its potential for success, which, in turn, enhances its attractiveness for further investment and implementation.

The Feasibility Phase

The Feasibility Scoping Phase serves the purpose of forming a consortium and agreeing on roles for project team members as well as ways of working in the upcoming Feasibility Study. It also aims at clearly defining the focus and goals of the upcoming Feasibility Study as well as the work that needs to be done for the specific corridor to reach these goals

The Feasibility Study aims at assessing the technical and regulatory feasibility of a specific green corridor along the fuel, port, vessel, and cargo dimensions as well as defining the residual cost gap. It further includes a risk registry and roadmap, all of which are outlined together with the consolidated findings of the Feasibility study

Project Commitment Letter

How this document is constructed

The Feasibility Scoping phase in detail

This phase consists of three main stages. In this document, all main stages are explained step by step.

The Feasibility Scoping phase in detail

Purpose

- The initial core consortium identifies and engages with new members to fill potential gaps in the consortium.
- The Project team agrees on main elements for the upcoming Feasibility Study:
 - o Vision, scope, goals, and narrative
 - o Project governance
 - o Work scope by customizing blueprint
 - o Project Plan
 - o Initial corridor modeling
 - o Project baseline
- Project members start working at this stage without any legal binding agreement, and only have a standard non-disclosure agreement. They will later prepare a PCL.
- The scoping phase is divided into three steps, each with a clear objective to allow the actual Feasibility Study to be as constructive and add as much value as possible.

Key questions

- The key questions are related to the upcoming Feasibility Study and can largely be divided into classic WH-questions:
 - o Why
 - Project Vision and narrative
 - o Who
 - Project consortium
 - Project governance
 - o What
 - Project scope and goal
 - Work scope definition
 - Corridor modeling
 - Project baseline
 - o When
 - Project Plan

 With the Scoping phase successfully completed, the project consortium can start studying whether or not the project scope is feasible on technical and regulatory levels. The consortium can also assess the economical perspective, including the residual cost gap, and the Just & Equitable characteristics.

Importance

- A successful Feasibility Scoping phase clarifies and concretizes the tasks and responsibilities within the project. This ensures that the Study phase goes smoothly.
- Having a clear definition of roles and responsibilities for the upcoming Feasibility Study enables the project consortium to collaborate efficiently.

Page 6

3

The Feasibility Scoping phase in detail

Phases	Key questions	Key activities
	A. Who are the relevant stakeholders who should be involved during the Feasibility Study and how will the project team work together?	Identify and engage potential consortium members , align on their roles and level of involvement (manhours in Feasibility Study), as well as defining project governance .
 Consortium formation & goal definition 	B. What are the vision, goals, and requirements for the upcoming Feasibility Study of the specific corridor?	Describe the project's vision, goals, and requirements in detail to identify the desired target state, including key considerations for a Just & Equitable Transition, for a specific corridor.
	C. What does the upcoming Feasibility project look like from a conceptual drawing point of view?	Make conceptual drawing of project and highlight numbers and types (fuel, renewables, etc). Define workstream delineations.
	D. Which activities and analyses should the Feasibility Study cover? And what is the expected duration?	Develop Work Scope Definition by customizing the Feasibility Study Methodology based on previously defined vision, goals, and requirements. Estimate manhours needed for main activities.
2. Customization & modeling	E. What does the timeline of the Feasibility Study look like	Develop a project plan in accordance with the previously defined Work Scope Definition.
	F. What are the estimated CO ₂ abatement and high- level costs of the green corridor?	Refine the Green Corridor Scenario Modeling tool to generate initial view on the CO ₂ abatement potential and incremental cost of green.
3. Baselining &	G. What are the key characteristics of a specific green corridor?	Consolidate knowledge in a corridor baselining document to create initial view on relevant fuels , port and bunkering infrastructure, relevant vessel characteristics and trade flows , as well as the CO ₂ abatement potential and costs associated with the specific corridor.
agreement	H. How will the project team formalize its collaboration/ cooperation during the Feasibility Study?	Set up the Project Commitment Letter , including a section on legal terms and a description of the project.

Consortium formation & goal definition	Customization & modeling	Baselining & agreement	
Consortium formation, including	Work scope definition	Green corridor project baselining	
governance	Project plan	Project commitment letter	
Project vision, goals, and requirements	Scenario modeling		
Conceptual scope drawing	Scenario modeling		
			>
$\langle \bullet \rangle$			Page 8

1A. Consortium formation (including assignment of roles and project governance)

Purpose

- Build on initial stakeholder interest.
- Identify additional stakeholders who can execute projects in the Feasibility Study, after agreeing on roles and level of involvement.
- Identify gaps in the consortium and propose including more stakeholders who can close these gaps.
- Create a project organization with responsibilities for each project member as well as define an overarching project governance.

Key questions

h

- Who are **relevant stakeholders** to involve during the Feasibility Study and how will the project team work together?
- Who should be added to consortium to increase probability of success of the Feasibility Study?
- Are all project participants aware of their **expected commitment**?
- Have project participants **reserved the manhours** needed for the Feasibility Study phase?

Importance

- The consortium provides the **specific expertise** and knowledge that can be **leveraged during** the Feasibility assessment.
- Roles and project governance need to be clarified and agreed on to ensure a smooth execution of the Feasibility Study and to instill accountability for the workstreams conducting the Feasibility Study.
- The consortium formation and governance is best ensured by using a common and shared Methodology.

1A. Consortium formation (including assignment of roles and project governance)

3

	Methodology – steps	Inputs
01	Create an initial core team for the project	 Conversations with stakeholders with commercial interest Consortium Incubation Workshop
02	Outline project governance and agree on roles for consortium members in an iterative process as the project team is formed	Conversations with project team membersInitial manhour commitment for study phase
03	Conduct a consortium gap analysis to identify workstream gaps in the consortium, identify additional members and agree on roles	 Conversations with project team members and relevant stakeholders Workstream Leads to consider Workstream Support
04	Finalize the consortium	Combination of the above
$(\mathbf{\dot{+}})$		

The consortium formation

Consortium is formed in an iterative process in parallel to other scoping activities

Project Consortium Core consortium Agreement on Final 000 K commitment 142 $\frac{1}{2}$ identified roles Gap Analysis consortium letter Create an initial core team for the Agree on roles for consortium Identify workstream gaps in the Finalize consortium

project including assignment of project lead

This typically includes a small subset of participants from the value chain that showed interest (e.g., during the Consortium Incubation Workshop) and/or stakeholders that approached one/more members of the core team.

members (Workstream Lead. Workstream Support, Sounding Board) for the upcoming Feasibility Study phase based on their commitment level, interest and expertise.

See also the commitment assessment in Pre-Feasibility Phase Methodology.

consortium

Select additional potential consortium members in a step-wise process based on level of commitment, interest and expertise, and align with the core team on the selection. Consider community/ worker representatives and nongovernmental organizations.

committed to moving into Feasibility Study.

Signing of Project Commitment Letter/NDA to ensure safe space for sharing sensitive data within the consortium.

Continuously adjust consortium as more insights are generated and goals evolve (the initial core team can already start with activities in the Scoping Phase before the consortium has been finalized)

1. The Workstream Lead of Workstream 6 is automatically the Project Lead

2. The need for support is decided upon by the Workstream Lead. The roles and responsibilities are to be clarified early on

Suggested set of responsibilities for each group of stakeholders

Role		Responsibilities	Resources required (hours)
	Project Lead (Workstream 6)	 Lead, plan and coordinate the project Provide guidance on processes/frameworks/methods/templates to ensure consistency and quality across workstreams and, due to its overseeing role, cannot take the role of Workstream Lead 2-5 Lead the consortium formation Gather and synthesize findings from the Feasibility study (Workstreams 2-5), including technical, regulatory, as well as cost assessments 	1,000-2,000
ĨŇ	Workstream Lead (Workstream 1)	• Take responsibility for the corridor baselining, including a preliminary assessment of the corridor's technical and regulatory feasibility as well as its costs (based on Pre-Feasibility findings)	100-250
Th	Workstream Lead (Workstreams 2-5)	 Take responsibility for a workstream, including coordination of workstream resources and activities Lead and oversee the workstream analysis with respective workstream members in accordance with defined scope, processes, and methods Gather, share, and analyze valuable information and data to assess the technical and regulatory feasibility as well as costs and summarize results in a report Identify project-related risks within the workstream area, and define and implement mitigating actions Liaise with Project Lead to align on deliverables (typically centered around and assessment of the technical and regulatory feasibility as well as costs, and summary of results in a report) and define the desired outcomes 	400-800 ⁽³⁾ Workstream support hours could be subtracted from this
	Workstreams Support ⁴ (optional)	 Support the Workstream Lead in gathering and analyzing valuable information and data in the respective workstream to assess the economic and regulatory feasibility as well as costs, and summarizing results in a report Align with the Workstream Lead on required analyses and desired outcomes 	50-300 Should be seen as part of the total workstream support hours
ĨŃ	Workstream Lead (Workstream 7)	 Take responsibility for the workstream, including coordination of workstream resources and activities Aggregate findings from the Feasibility study and derive a roadmap which describes how the project can be brought forward that can be publicly shared with relevant stakeholders 	300-500
Pôô	Sounding Board	• Provide feedback and input throughout the project. Also covering non-technical matters such as environmental or social NGO, civil society, and workers groups.	10-30
$(\mathbf{\dot{\bullet}})$	3: The expected manhou 4: The need for support i	irs needed for the entire workstream. If Workstream Lead is alone, it corresponds to Workstream Lead expectation s decided solely by the workstream leads	Page 13

Project Lead / Workstream Lead / Workstream Support dialogue

This template facilitates dialogue between the project lead, the workstream lead and the workstream support(s) by formalizing roles and responsibilities for executing or supporting actions across various workstreams.

It clarifies who will be accountable for specific tasks and evaluates their expertise at company, department, or personnel levels, thereby enhancing coordination and efficiency within the project framework.

	WorkStrouin Bosonption		
Name of the Workstream			Today's Date
	Port & bunkering infrastructure		
Project Name			Planned Start
Workstream Lead	Workstream Support		Planned End
Name / Department / email / Other contacts if any			
Significant Milestones (Dates) and Required Delive	rables		
Requested Result / Solution (incl. Completion Crite	eria)		
Critical Success Factors / Risks			
Detailed Activity Descriptions (Incl. All Involved / Pa	articipating Resources / Departments)		
· · · · ·	· · · · · · · · · · · · · · · · · · ·	Competence (Cor	npany, department, Personnel levels)

Workstream Description

THE MOLEN

Role ass	signment ter	mplate						TENNOL A TO			
	1 1 1	2	3	4	5						
Workstreams	Corridor baseline \rightarrow	Alternative fuels supply chain	Port and bunkering infrastructure	Low/zero emission vessels	Cargo demand dynamics	-(Summary of technical and regulatory feasibility and cost assessments	Roadmap and commitments			
Stakeholders	All stakeholders	Fuel producers	Port and bunkering operators	Shipowners and operators	Cargo owners	\bigcirc	All stakeholders	All stakeholders			
Workstream Lead Workstream Support	Examples of po • Fuel produ • Trading of • Logistics • Port and b	Examples of potential stakeholders are: • Shipowners and companies • Fuel producers • Cargo owners • Trading operators • Investors • Logistics companies • Consulting services companies • Port and bunkering operators • Consulting services companies									
Sounding Board	Representative	Note for Sounding Board: Representative from environmental or social NGO should be included to provide a perspective without a commercial interest Regional representative from the affected civil society or workers groups can be included.									
(Page 15			

1B. Project vision, goals, and requirements

Purpose

- Provide a sense of direction to the project team and create a shared understanding of what the project aims to achieve in the Feasibility phase.
- Describe the project's vision, goals, and requirements in detail to **identify the desired target.**
- Offer input and guidance for the entire Feasibility project.

Key questions

- What are the vision, goals, and requirements for the upcoming Feasibility Study of the specific corridors?
- Which are the important **focus areas** for the upcoming phases?
- What are the **desired outcomes**?
- Which **results** are key to proceeding to the next step?
- How do green corridors support the areas' overall social, ecological or economical goals and ambitions described in the vision?

Importance

- Establishment of a **clear** project vision, goals, and requirements for the Feasibility Study that will guide the consortium.
- Development of workstreams with **leads** and **support** (if deemed necessary) based on the requirements of the project.
- Ensures the alignment of stakeholders on the project's objectives. This alignment is vital for the success of green corridor projects.

1B. Project vision, goals, and requirements

	Methodology – steps	Inputs
01	Describe the desired target state	 Conversations with key project stakeholders Output from Pre-Feasibility Study⁵, final list of green corridors assessment (1st Wave)
02	Create a Scoping factsheet with key data on fuel, port, bunkering, and storage, as well as vessel and cargo. Update as more insight is acquired	Conversations with key project stakeholders
03	Describe the project's vision, goals, and requirements as precisely as possible	Combination of the above

3

Each project requires a project vision, goals, and requirements, and a scoping factsheet

To be detailed further in an iterative process throughout the Scoping Phase

A. Project Vision

Vision and context

What is the overall vision and what recent developments does the project play into?

Goals and value streams related to the vision

How does this project contribute to realizing the overall vision?

Just & Equitable How can the outcomes of the project be a positive driver for a Just & Equitable green transition

Include relevant data points, if available, to support the overall vision, to make it more tangible

>

Internal

A. Example of a project vision – Chile

Vision and context

"Chile is recognized as one of the places in the world where **hydrogen will be produced at the lowest cost** (LCOH). As a consequence, the hydrogen derivate maritime fuels **ammonia and e-methanol are also expected to be produced at low cost in Chile**. Chile has therefore embarked on a Green Hydrogen Journey and wants to be a **key source of cheap renewable energy for the future**."

Goals and value streams related to the vision "Given its geographic configuration with more than 4,000 km coastline, the vast majority of the international import and export **takes place via maritime transport**. As the majority of the fuel to be produced in Chile will be ammonia (lack of sustainable CO2), **it is crucial for Chile to demonstrate that ammonia is a useful and safe fuel**.

Chile is the **largest copper exporter in the world**, and copper is one of the five critical elements for the Green Transition, and hence growth in the copper export is expected. At the same time, there is a growing interest for cradle-to-cradle emission for all products (especially amongst Western consumers). Chile is therefore keen to **explore the options for zero-emission copper production**."

Just & Equitable This part has not been assessed during the Chilean Feasibility scoping phase as the specific J&E methodology has been developed by the Center post project start (2023)

A. Example of supporting material for project vision – Chile

Container vessel

 (\mathbf{i})

PowerPoint Presentation limf.org

B. Scoping factsheet for Feasibility – Template

	Source(s) of renewable energy :	[Size, capacity (MWh), Type (solar, windfarm)]				
	Alternative fuels type:	[Name of fuel to be used in corridor]				
	Alternative fuels consumption per vessel per journey:	[Amount of fuel expected to be used in t/journey]				
	Alternative fuels consumption per vessel per year (X journeys/year):	[Amount of fuel expected to be used in t/year]				
	Alternative fuels transportation and infrastructure:	[How will fuel be transported from production site to port]				
	Ports:	[All ports to be involved in the corridor]				
	Storage:	[Location of storage]				
	Bunkering:	[Type and location of bunkering]				
A	Vessels:	[Type of vessels]				
	Cargo:	[Type of cargo]				
	Cargo per vessel per year:	[Amount of cargo in t/year]				

First vessel in water

All vessels decarbonized

To be detailed further in Feasibility Study

THUNDLA TH

Internal

B. Example of scoping factsheet for feasibility – Copper export corridor with ten bulk carriers for the transport of copper ore / concentrate

Source(s) of renewable energy :

630 Ha, 420 MWac output, PV solar type

	Alternative fuels type:	Ammonia				
	Alternative fuels consumption per vessel per journey	4.298 t				
	Alternative fuels consumption per vessel per year (X journeys/year):	13.772 t				
	Ports:	Puerto Angamos to Japan				
	Storage:	Interacid / Puerto Angamos				
	Bunkering:	Jetty or barge (Interacid / Puerto Angamos)				
4	Vessels:	10 * 55.000 t Bulk Carrier (Supramax) with five parcels á 11.000 t (150 "green" parcels)				
~~	Cargo:	Copper Concentrate				
	Cargo per vessel per year:	180.000 t Copper Concentrate				
<u>i, i, i, i, i, i, i</u>	First vessel in water	2028/2030				
	All vessels decarbonized	2034				

C. Project vision, goals, and requirements - Template

THE ROLF

C. Example of project vision, goals, and requirements – Chile

EL PAND

1C. Conceptual scope drawing

Purpose

- Provide a visual alignment of direction to the project team and create a shared understanding of what the project aims to achieve in the Feasibility phase.
- Serve as **one-figure-to-explain-it-all** slide of the project.
- Describe the agreed types/numbers/amounts within each workstream, and clearly outline the delineation between the workstreams – use scoping factsheet as basis.
- Can be used to agree on options/variations/scenarios to be considered and assessed in the Feasibility Study phase.

Key questions

- What is the **scope** of the upcoming feasibility study of the specific corridors?
- Which types/numbers/amounts are relevant for the individual workstreams:
 - o Fuel Group
 - o Renewable Area
 - o Renewable Type
 - o Electrolysis type
 - o Fuel Type & Feedstock
 - o Storage type
 - o Bunkering option
 - o Vessel Segment, Size, Engine
 - o Cargo Group and Type
- What is the **responsibility/delineation** of each workstream?
- What are the agreed options/variations/scenarios to be assessed?

- Establishment of a **clear visual description** for the Feasibility Study, which will guide the discussions in the project team.
- Ensures the **alignment of stakeholders** on the project's objectives. This alignment is **vital** for the **success** of green corridor projects.
- Ensures that work done in the individual workstreams, if **changed** from the initial scope, can be **discussed and aligned** with the relevant other workstreams.

1C. Conceptual scope drawing

3

	Methodology – steps	Inputs	
01	Fill out Scoping Drawing Questionnaire , to ensure that all elements are identified.	Scoping Factsheet	
02	Create the Scoping Drawing by utilizing standard pictograms of essential building blocks for green corridor elements. Highlight connectors between each element and workstream. Outline delineation between individual workstreams.	 Scoping Drawing template and associated pictograms Alignment with Workstream Leads 	-
03	Specify types, size, amounts for the different elements across the value chain.	Scoping Factsheet	
04	Ensure alignment through Workstream Leads.	Meeting/review with Workstream Leads	
05	<u>Optional step:</u> The Scoping Drawing can also be used to outline options/variations to the Base Case Scenario	Meeting/review with Workstream Leads	
$\langle \bullet \rangle$			Page 29

1.3 Scoping Drawing Questionnaire

Time

Port B / Fuel B

This is only relevant if roundtrip cannot be made on single fuel tank hold i.e. 'fuel at both ends needed'

Time: phases in the development of the project																					
	Fuel A		Poi Call & B	rt A - Bunkering		Vessel			Port B -		P Call &	ort B - Bunkering	ing Fuel B								
Fuel amount A					Number of vessels					Cargo		Call		Fuel amount B							
Fuel Group	Renewable Area	Renewable Type	Electrolysis type	Fuel Type & Feedstock	Storage type	Bunkering	Vessel Segment	Vessel size (Gross Tonnage)	Vessel size (Cargo Tonnage)	Vessel Engine	Cargo Group	Cargo Type	Cargo	Calling / Bunkering	Bunkering	Storage type	Fuel Type & Feedstock	Electrolysis type	Renewable Type	Renewable Area	Fuel Group
e-fuel	Offshore	wind	Acidic (PEM: Polymer Electrolyte Membrane)	e-methane (point source)	Refrigerated	Jetty	Bulk Carrier	0-9999			Bulk	Ore			Jetty	Refrigerated	e-methane (point source)	Acidic (PEM: Polymer Electrolyte Membrane)	wind	Offshore	e-fuel
bio-fuel	Onshore	solar	Alkaline (AEL)	e-methane (direct air capture)	Pressurized	Barge	Tanker	10000-34999				Liquid			Barge	Pressurized	e-methane (direct air capture)	Alkaline (AEL)	solar	Onshore	bio-fuel
blue fuel		hydro	Solid oxide electrolyser cells (SOEC)	e-methanol (point source)	Ambient		Container	35000-59999			Container					Ambient	e-methanol (point source)	Solid oxide electrolyser cells (SOEC)	hydro		blue fuel
		Other		e-methanol (direct air capture)			Gas Carrier	60000-99999									e-methanol (direct air capture)		Other		
				e-diesel (point source)			Tanker	100000-199999									e-diesel (point source)				
				e-diesel (direct air capture)			Ferry	200000+									e-diesel (direct air capture)				
				e-ammonia			Cruise										e-ammonia				
				Blue ammonia			RoRo/ Car carrier										Blue ammonia				
				FAME (very low availability)			Tug										FAME (very low availability)				
				Bio-methane			Offshore										Bio-methane				
				Bio-methanol			Other										Bio-methanol				
				Bio-oil (HtL) (Low TRL, not existing in 2024)													Bio-oil (HtL) (Low TRL, not existing in 2024)				
				Bio-oil (pyrolis) (Low TRL, not existing in 2024)													Bio-oil (pyrolis) (Low TRL, not existing in 2024)				

The Scoping Drawing Questionnaire is to be filled out for the end state, but can also be filled out for

THE ROLL PART

1.3 Scoping Drawing Questionnaire

	-ime:	202	28		 - •	Time The Sco out for th phases i	ping Drav ne end sta n the dev	ving Ques ate, but ca elopment	stionna an also : of the	ire is to be fille projec	b be fill d out f t	ed or			Th sir	is is onl ngle fuel	y relevant if rou tank hold i.e. 'f	undtrip cannot uel at both en	: be m ds ne	ade c	n
Fuel A: e-ammonia C					Port A: I Call & F	Mejillones 3unkering	Vessel					Port Cargo Naos			Port B: Call &	Naoshima a.o. Bunkering	na Fuel B: e-ammonia ng				
Fuel amount A: 70.000 mt					N	umber of ves	ssels: 10		a a.o.						Fuel Amount B: 70.000 mt						
Fuel Group	Renewable Area	Renewable Type	Electrolysis type	Fuel Type & Feedstock	Storage type	Bunkering	Vessel Segment	Vessel size (Gross Tonnage)	Vessel size (Cargo Tonnage)	Vessel Engine	Cargo Group	Cargo Type	Cargo	Calling / Bunkering	Bunkering	Storage type	Fuel Type & Feedstock	Electrolysis type	Renewable Type	Renewable Area	Fuel Group
e-fuel	Onshore	solar	tbd	e-ammonia	Pressurized	Jetty	Bulk Carrier	35.000 gt	55.000 dwt	ICE dual fuel e.g. MAN B&W 6S50ME	Bulk	Ore	Copper Concentra te	a Bunkering	?	?	e-ammonia	tbd	?	?	e-fuel
e-fuel	Onshore	solar	tbd	e-ammonia	Pressurized	Barge	Bulk Carrier	35.000 gt	55.000 dwt	ICE dual fuel e.g. MAN B&W 6S50ME	Bulk	Ore	Copper Concentra te	a Bunkering	?	?	e-ammonia	tbd	?	?	e-fuel

Port B / Fuel B

EL AND FR

1.3 Scoping Drawing template – fuel required in several parts of the corridor

Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Bunker	Storage	Fuel	Electrolysis	Energy
Type/ Area												
l: Size/ amount												
ll: Size/ amount												
III: Conne	ctors WS 2	2 WS	2 WS	S2/3 WS	3 W	S 3 / 4	WSC	3/4 W	/S 3 WS 2	2/3	WS 2 W	'S 2

•

1.3 Scoping Drawing template – fuel only required in one end of the corridor

Page 33

WS 3/4

II: Size/ amount

III: Connectors

WS 2

WS 2

WS 3

1	.3 Sco	oping E)rawir	ng temp	plate	4	5					ET AND IN
	2	Alternativ fuels supp chain	e oly	Port bun infra	and kering astructure	Low / zero emission	Cargo demand	3 b ir	Port and punkering nfrastructure	2	Alternativ fuels sup chain	ve ply
le: 2028						vessels	dynamics					
Tim	FL	iel A: E-ammoi	nia	Port A: Mejil	lones			Port B: Na	aoshima a.o.	F	uel B: E-ammo	onia
	Energy	H ₂	Fuel	Storage	Bunker	Vessel(s)	Cargo	Bunker	Storage	Fuel	H ₂	Energy
Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Bunker	Storage	Fuel	Electrolysis	Energy
Type/	Onshore	TBD	E-	Pressurized	Jettv	Bulk carrier 55.000	Copper	?	?	e-	?	?

1.3 Scoping Drawing template

 (\mathbf{A})

Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Bunker	Storage	Fuel	Electrolysis	Energy
Type/ Area	Onshore Solar	TBD	E- ammonia	Pressurized	Jetty	Bulk carrier 55.000 dwt	Copper concentrate	?	?	e- ammonia	?	?
l: Size/ amount	630 ha / 420 MWac	28.000 mt		70.000 mt		10			70.000 mt		28.000 mt	
ll: Size/ amount												
III: Conne	ctors WS 2	2 WS	2 WS	62/3 WS	3 WS	53/4	WSS	3/4 W	'S 3 WS 2	×/3 V	/S 2 W	S 2

	1.3 Scoping Drawing temp	plate		Et AND LE
	Alternative fuels supply chain	t and kering astructure Low / zero emission vessels	Cargo demand dynamics Port and bunkering infrastructur	re
Time: 2030	Fuel A: E-ammonia Port A: Meji Energy Ha Euel Storage	llones Bunker Vessel(s)	Port B: San Antonio a.c	
	Energy Tr ₂ Fuel Storage	Buriker Vessei(s)	Cargo Call	

Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Call	Storage	Fuel Electrolys	as Energy
Onshore Solar	TBD	E- ammonia	Pressurized	Barge	Chemical tanker 25.000 dwt	Sulfuric Acid	-	er	e- nmonia	
47 ha / 32 Mwac	2.100 mt		10.000 mt		2	1.000.000 mt		70.000 mt	28.000 #	u
Ill: Connectors WS 2 WS 2/3 WS 3/4 WS 3/4 WS 3/4										
	Energy Onshore Solar 47 ha / 32 Mwac	EnergyElectrolysisOnshore SolarTBD47 ha / 32 Mwac2.100 mt47 ha / 32 MwacWS	Energy Electrolysis Fuel Onshore Solar TBD E- ammonia 47 ha / 32 Mwac 2.100 mt Image: Construction of the second s	EnergyElectrolysisFuelStorageOnshore SolarTBDE- ammoniaPressurized47 ha / 32 Mwac2.100 mt10.000 mt47 ha / 32 MwacWS 2WS 2WS 2/3	EnergyElectrolysisFuelStorageBunkerOnshore SolarTBDE- ammoniaPressurizedBarge47 ha / 32 Mwac2.100 mt10.000 mt10.000 mt47 ha / 32 MwacWS 2WS 2WS 2/3WS 3	EnergyElectrolysisFuelStorageBunkerVesselOnshore SolarTBDE- ammoniaPressurizedBargeChemical tanker 25.000 dwt47 ha / 32 	Energy Electrolysis Fuel Storage Bunker Vessel Cargo Onshore Solar TBD E- ammonia Pressurized Barge Chemical tanker 25.000 dwt Sulfuric Acid 47 ha / 32 Mwac 2.100 mt 10.000 mt 2 1.000.000 mt 47 ha / 32 Mwac 2.100 mt Image Image Image Image 47 ha / 32 Mwac 2.100 mt Image Image Image Image Image 10.000 mt Image Image Image Image Image Image Image Image total Image Image <td>Energy Electrolysis Fuel Storage Bunker Vessel Cargo Call Onshore Solar TBD E- ammonia Pressurized Barge Chemical tanker 25.000 dwt Sulfuric Acid - 47 ha / 32 Mwac 2.100 mt Image 10.000 mt 2 1.000.000 mt Image 47 ha / 32 Mwac 2.100 mt Image 10.000 mt 2 1.000.000 mt Image ctors WS 2 WS 2 WS 2/3 WS 3 WS 3/4 WS 3/4 WS 3/4</td> <td>Energy Electrolysis Fuel Storage Bunker Vessel Cargo Call Storage Onshore Solar TBD E- ammonia Pressurized Barge Chemical tanker 25.000 dwt Sulfuric Acid - Image: Storage Storage</td> <td>EnergyElectrolysisFuelStorageBunkerVesselCargoCallStorageFuelElectrolysisOnshore SolarTBDE- ammoniaPressurizedBargeChemical tanker 25.000 dwtSulfuric Acid<!--</td--></td>	Energy Electrolysis Fuel Storage Bunker Vessel Cargo Call Onshore Solar TBD E- ammonia Pressurized Barge Chemical tanker 25.000 dwt Sulfuric Acid - 47 ha / 32 Mwac 2.100 mt Image 10.000 mt 2 1.000.000 mt Image 47 ha / 32 Mwac 2.100 mt Image 10.000 mt 2 1.000.000 mt Image ctors WS 2 WS 2 WS 2/3 WS 3 WS 3/4 WS 3/4 WS 3/4	Energy Electrolysis Fuel Storage Bunker Vessel Cargo Call Storage Onshore Solar TBD E- ammonia Pressurized Barge Chemical tanker 25.000 dwt Sulfuric Acid - Image: Storage Storage	EnergyElectrolysisFuelStorageBunkerVesselCargoCallStorageFuelElectrolysisOnshore SolarTBDE- ammoniaPressurizedBargeChemical tanker 25.000 dwtSulfuric Acid </td

1.3 Scoping Drawing template

Page 35

2D. Work scope definition

Purpose

- Point of reference and guide during Feasibility Study.
- Develop Work Scope Definition by customizing the Feasibility Study Methodology based on previously defined vision, goals, and requirements.
- Create transparency and alignment around expectations in the Feasibility Study using the Feasibility Matrix (see page 42).

Key questions

- Which activities and analyses are **relevant** for the Feasibility Study?
- What does the **resource requirement/timeline** of the Feasibility Study look like?

- Importance
- The Standard Methodology is intended to be used by the project team as a guide and can be **adjusted when and where necessary**.
- The project team can complement the Methodology with new project-specific activities/ analyses if needed.
- Not every activity listed in the Methodology may be applicable or necessary for every project. But all main activities should be covered.
- The Work Scope Definition **outlines all activities and analyses required** in the Feasibility Study to achieve the desired goals and outcomes. Thus, the definition, together with the project plan, serves as a guide for the workstreams during the Feasibility Study.

2D. Work scope definition

3

	Methodology – steps		Inputs	
01	Provide an overview of the key data as a common poir matrix. Use Conceptual Sc	project's desired outcomes and It of reference in the Feasibility ope Drawing as guidance	 Project vision, goals, and requirements Workstream Lead assessment of project requirements 	
02	Generate Work Scope Defi Methodology <i>(Work Scope L</i> <i>Methodology as reference/ g</i>	nition by customizing Definition replaces Standard uide for the project after this step)	Project vision, goals, and requirementsInput from Workstream Leads	
03	Create work packages in ad Definition	ccordance with Work Scope	 Work Scope Definition [Methodology 2D] Feasibility Study project plan guideline [Methodology 2E] 	
	Illustrative visualization:			
	Project vision, goals, and requirements serve as input	eprint customization & Work Scope ethodology:	Definition Elements of the Methodology Newly added analyses	
	We	ork Scope Definition: 🛡 🛡 🔍 🛡		ge 38

The Work Scope Definition is generated based on the customized Methodology

A. Use the Feasibility Methodology as reference and customize it where and if necessary

B. Generate Work Scope Definition

Based on the standard Feasibility Study Methodology and the previously defined project vision and goals, Workstream Leads identify **which elements are required** for their workstream in the Workstream Overview sheets (*Excel template available*)

Workstream Leads also have the option to **add additional analyses** if and where necessary

Workstream Leads and Project Lead align on the Work Scope Definition – Project Lead to point out potential gaps between desired outcomes and the customized Methodology

Workstream Leads to estimate the **manhour requirements** to handle the identified tasks

Project Lead to consolidate inputs across workstreams into a final Work Scope Definition. From this point on, the Work Scope Definition replaces the Methodology as reference/ guideline for the project

Workstream Lead to **create work packages** for the workstream based on the Work Scope Definition

 (\mathbf{i})

A. Each Workstream Lead to provide key information and customize the Methodology for their respective workstreams (1/2)

A	В	C	D	E	F	G	
1	Workstream Descrip	tion					
2 Name of the Workstream					Tod	ay´s Date	
3	Energy & fuel						
5 Project Name					Plan	ned Start	
5							
8 Workstream Lead	Workstream Support				Plar	ned End	
9 10 11 12 13 Significant Milestones (Dates) and Required Deliverab	les						Overview: Fill in high-level workstream description, incl. milestones and key deliverables, desired results
14 15							and success factors / risks
6 Requested Result / Solution (incl. Completion Criteria)							
8							
9 Critical Success Factors / Risks 0							Document with comments on how the standard tas from the Methodology applies to the specific corrid
22 Detailed Activity Descriptions (Incl. All Involved / Partic Blueprint	ipating Resources / Departments)		Importance)		Resources	(3) Importance:
23						Required	Indicate the relative importance of the tasks
Elements	Methodology Steps	Comment	High	Medium	Low (Not included in	Hours / weeks	
2.1 Estimate fuel demand for the specific green corridor	2.1A Estimate energy demand for the specific corridor based on expected evolution of trade						(4) Resources:
2.1 Estimate fuel demand for the specific green corridor	2.1B Calculate alternative fuel demand for the						Indicate the expected manhour requirement to perform the task . Ensure time for QC / review
 		2		3		4	Page 40

A. Each Workstream Lead to provide key information and customize the Methodology for their respective workstreams (2/2)

2.5 Additional activities (optional) 41 42 43 44 Interfaces and Relations to other Work Packages 45 46 47 Data Input Required 4 Energy	2.5A 2.5B 2.5C	5 Methodology customization (2/2): Add additional rows in the spreadsheet, if you would like to add additional analyses to the Methodology / Feasibility assessment, and identify interdependencies between other work packages / workstreams
49 Energy project production 50 Energy project size (Ha) 51 Energy project location 52 Energy project operational 53 Energy project operational 54 Fuel 55 Fuel type 56 Fuel consumption (t/vessel 57 Fuel amount per year 58 Fuel project location 60 Fuel project supporting facts 61 Attachment (Further Information) 62 63		6 Key data points: Add key data points for the respective workstream and include attachments if relevant. <i>The currently displayed data points are exemplary</i> <i>and can be customized as per your needs</i> (Consider which data points would be relevant to know for your project partners when choosing data points to display)
64 Other 65 66 67 Signature Workstream Lead 68 69 70 Signature Project Lead 71 72		7 Comments and signatures: Add comments if necessary and, after review and alignment with the Project Lead, sign the document

A. The Feasibility matrix provides an overview of the project's key data and desired outcomes

Action required in Scoping

B. The input from the Workstream Leads is consolidated into the Work Scope Definition

	A	В	С	D	E	F	G	Н	
1			Work Scope Defi	nition					
2	Project Name		•				Tod	av's Date	
3									
4									\frown
5	Workstream Lead		Workstream Support				Plan	ned Start	
6	_								Project Lead enters
7	-						Plar	nned End	
ð o	Work Coope Definition								general introductory
9	Work scope Definition	: Energy & fuel				Imp	ortance	Resources	information
10	Lion to the and a lion to the lion	i chorgy a laor				in the	or tanoo	Required	
11	Key questions		Workstream analyses	Comment	Hi	igh	Medium	Hours /	
12									
13									
14									
15									
16									
1/									
10	Workstream 3 activities	: Port and bunkering infrast	ructure			Imp	ortance	Resources	
19								Required	Work scope definition:
20	Key questions		Workstream analyses	Comment	Hi	igh	Medium	Hours /	Project Load compiles
21									Froject Lead complies
22									Work Scope Definition
23									hased on input from
24									
25									Workstream Leads
20									(The Excel sheet
-1	Workstream 4 activities	: Vessel decarbonization pa	thway	1		Imp	ortance	Resources	
28								Required	automatically draws
29	Key questions		Workstream analyses	Comment	Hi	igh	Medium	Hours /	activities directly from th
30									
31	1								<i>VVorkstream Description</i>

sheets)

2E. Project plan

Purpose

- Provide a clear and transparent overview of workstream activities, meeting cadence, key deliverables and deadlines in the Feasibility Study.
- Allocate resources effectively to complete the project.
- Reference point for project team to hold each other a-ccountable against the agreed timeline during the Feasibility Study.

Key questions

- How much **time** will it take to carry out the key activities under each workstream?
- When are **resources** from the individual project teams **available** for carrying out the activities?
- Where/how do the activities **require input** from other workstreams?
- When will key **conference/meetings** related to the project take place?

- A **shared and clear** project plan is paramount for the efficient execution of any project.
- The green corridor projects involve **several stakeholders** who are often not familiar with working with each other and are often in different time zones. It is important that **everyone works according to the same plan**.
- The project plan gives a clear **outline of interdependencies** between the workstreams.

	Methodology – steps	Inputs
01	Share project plan template with project team members	Feasibility Study Project Plan guide
02	Incorporate input on timelines related to workstreams	Work Scope Definition [Methodology 2D]Input from Workstream Leads
03	Compile final project plan based on the received input	Outcome of the above

Project plan

The project plan serves as a common point of reference throughout the entire project

Template: Develop a Feasibility Study project plan using the template

	Feasibility Study												Ye	ar											
	r customey seady		Ju	ine			Ju	ıly			Au	gust			Septe	mber			Oco	tber			Nove	mber	
ID	Workstream	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	Corridor baseline (optional)																								1. Enter the duration of t
-2	Alternative fuels supply chain																								indicate with lines (use
3	Port and bunkering infrastructure																								the "Draw Border" tool) if
4	Low/zero emission vessels																								they depend on each ot
5	Cargo demand dynamics																								
6	Summary of technical and regulate																								
7	Roadmap and commitments																								
	Milestones		Mo	onth			Mo	nth			Mo	nth			Mo	nth			Mo	nth			Mo	nth	2 Insert key milestones
ID	Activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	2. Il iser i key milestories
Α	Steering group meeting																						_		nere
В	Workshop																								
С	Status Meeting																								3. Detailed tasks
													V											_	Workstream Leads list
	Alternative fuels supply chain		Mo	onth			Мо	nth			Мо	nth	re	:aí	Mo	nth			Mo	nth			Mo	nth	Lasks, their duration, and
2		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	key milestones – Can
2 ID	Task	1									:														serve as input to
2 ID 2	Task	1																					<		overarching project plar

THUNDLAN TH

High-level project plan for a Feasibility Study over one year

ILLUSTRATIVE

EL MADE

Tasks in each workstream should be clustered into actionable, but high-level work packages

| ILLUSTRATIVE

2F. Scenario modeling

Purpose

- Evaluate the high-level CO₂ abatement potential for the specific corridor.
- Provide an initial estimate of the incremental cost of green and incremental cost per cargo unit for the selected corridor.
- Serve as a first point of discussion with consortium members on the residual cost gap.

Key questions

h

- How much CO₂ emission can be abated by the specific corridors as vessels move from fossil-based fuel to the alternative fuel of choice?
- What is the total **CAPEX and OPEX** for establishing the corridor:
 - o Renewable energy
 - Fuel production
 - o Port Infrastructure
 - o Vessels

Importance

- A good understanding of the incremental cost, amount of abated CO₂, cost impact on cargo, and cost of abated CO₂ is important for the communication regarding the project.
- These initial estimates give an important indication and **allow stakeholders to understand** if the corridor is likely to be impactful in terms of CO₂ abatement, cost effectiveness, technological enabling, etc.
- Ultimately, the estimates allow the very first assessment as to whether **it makes sense to do** a Feasibility Study.

	Methodology-steps	Inputs
01	Use Green Corridor Scenario Modeling Tool according to the corridor's specifics and initial assumptions, if and where needed	 Green Corridor Cost Model Initial assumptions and input from Workstream Output from the Pre-Feasibility Study 1st Wave Assessment
02	Review output in the tool , e.g., CO2 abatement potential, incremental cost of green, etc.	• n/a
03	Conduct additional scenario modeling if required	Input from Workstream Leads

The cost and scenario assessment provides preliminary insights on the incremental cost of green and $\rm CO_2$ abatement potential of the green corridor

The Green Corridor Scenario Modeling Tool⁽⁶⁾ is a configurable, automated Excel tool that provides insights on costs and CO_2 abatement potential of a corridor

How to use the tool

angle For now, the tool has a range of limitations:

- In the output, electricity and fossil fuel costs are considered OPEX only.
- Lost cargo space from larger fuel tanks. Currently, the model assumes same size fuel tanks independent of the configuration.
- Electrical and heat energy demand assumed constant no matter the operational profile to simplify vessel calculation
- Port costs are input with very simple assumptions. Please change these when configuring a corridor if you have a better view on these values.

⁽⁶⁾ Can be downloaded: <u>https://cms.zerocarbonshipping.com/media/uploads/documents/green_corridor_model_v0.9.xlsx</u>

Configurator: This sheet allows users to configure the model to fit the selected green corridor's specifics Deep dive follows 2 main output graphs X

Option 1

e-methanol (PS

Option 2

e-methane liquefied (PS)

configuration

Close cost-gap to

Option 4 by adding a

willingness-to-pa

Option 3

e-ammonia

Ammonia

LSFO

Option 4

Blue ammonia (CCS)

Ammonia

Unit

Close cost-gap to

Option 2 by adding a

willingness-to-pa

Fuel configuration

Close cost-gap to

Option 1 by adding a

willingness-to-pay

Main fuel

Input values

Α

В

С

Only red cells should be adjusted by the user some of the cells have a drop-down menu that opens when clicking on the cell or pressing the 'alt' and ' \downarrow ' keys simultaneously.

Override function (optional)

The red cells in this column can be used to override the values to their left, if needed.

Goal seeking (optional)

The green buttons help the user understand the impact of adding a carbon price or adjusting the willingness to pay on the incremental cost of green (i.e., the cost gap).

Main fuel type Methanol Methane Vessel types for fuel DF Methanol DF Methane DF Ammonia Pilot fuel LSFO LSFO Unit Value Override Corridor configuration Furone Bunker region 2025 Vessel segment Container Vessel size 8000 TEU Number of vessels 1 Lifetime of corridor Years 25 Knots 18 Average vessel speed 8,000 Cargo per vessel TEU Cargo value USD/TEL 50,000 8,000 Distance for one roundtrip Nautical miles Days 240 Days at sea 13.0 Number of roundtrips per year 65% Cargo utilization Regulatory configuration Unit Value orridor carbon price USD/tCO2eo Willingness to pay from cargo owners/customers % of cargo value Close cost-gap to Close cost-gap to Close cost-gap to Close cost-gap to Option 1 by adding a Option 2 by adding a Option 3 by adding a Option 4 by adding a carbon price carbon price carbon price carbon price Reset regulatory

Close cost-gap to

Option 3 by adding a

willingness-to-pay

Baseline

LSFO

Output

The graphs provide the following output:

- 1. Incremental cost of green by alternative fuel type, split into transport and cargo
- Total cost by alternative fuel type, split into vessel, port, fuel, emissions
- Emissions compared to fossil-fuel baseline by alternative fuel type З.

A. Input values: Fuel configuration – The user can select different fuel types to be compared to the fossil-fuel baseline

Fuel configuration

Fuel configuration	Unit	Option 1	Option 2	Option 3	Option 4	Baseline
Main fuel	-	e-methanol (PS)	e-methane liquefied (PS)	e-ammonia	Blue ammonia (CCS)	LSFO
Main fuel type	-	Methanol	Methane	Ammonia	Ammonia	Diesel
Vessel types for fuel	-	DF Methanol	DF Methane	DF Ammonia	DF Ammonia	MF Diesel
Pilot fuel	-	LSFO	LSFO	LSFO	LSFO	LSFO

Corridor configuration	Unit	Value	Override
Bunker region	-	Europe	
Year	-	2025	
Vessel segment	-	Container	
Vessel size	-	8000 TEU	
Number of vessels	-	1	
Lifetime of corridor	Years	25	
Average vessel speed	Knots	18	
Cargo per vessel	TEU	8,000	
Cargo value	USD/TEU	50,000	
Distance for one roundtrip	Nautical miles	8,000	
Days at sea	Days	240	
Number of roundtrips per year	-	13.0	
Cargo utilization	%	65%	

Regulatory configuration	Unit	Value
Corridor carbon price	USD/tCO2eq	-
Willingness to pay from cargo owners/customers	% of cargo value	-

Options 1-4 can be customized by the user by adjusting the red cells. The white cells are automatically filled based on input in the main fuel row.

The **Baseline** in column H includes the **standard fossil fuel** as a comparison.

See the "FuelAssumptions" sheet for fuel data.

A. Input values: Fuel configuration – The model is backed up by a granular and robust data set including multiple bunker fuels

Granularity of data – selected elements (exemplary)

Bunker fuels	
 Bunker fuels e-hydrogen (liquefied) e-hydrogen (compressed) e-ammonia e-methanol (DAC) e-methane liquefied (DAC) e-methane liquefied (PS) e-diesel (DAC) e-diesel (PS) Blue ammonia (CCS) Bio-methane (liquefied) Bio-methane (liquefied) Bio-oil (HTL) Bio-oil (Pyrolysis) LNG LSFO 	Yearly data points for e-hydrogen (liquefied) for the following parameters: • CapEx (Global) • OpEx (Africa) • OpEx (Americas) • OpEx (Asia) • OpEx (Europe) • OpEx (Middle East) • Total emissions – WTT – GWP100 (Global) • Total emissions – WTW – GWP100 (Global)

A. Input values: Corridor configuration – Users can adjust multiple parameters to ensure the data model matches the specific corridor's characteristics

Corridor configuration

Fuel configuration	Unit	Option 1	Option 2	Option 3	Option 4	Baseline
Main fuel	-	e-methanol (PS)	e-methane liquefied (PS)	e-ammonia	Blue ammonia (CCS)	
Main fuel type	-	Methanol	Methane	Ammonia	Ammonia	
Vessel types for fuel	-	DF Methanol	DF Methane	DF Ammonia	DF Ammonia	MF Diesel
Pilot fuel	-	LSFO	LSFO	LSFO	LSFO	

Corridor configuration	Unit	Value	Override
Bunker region	-	Europe	
Year	-	2025	
Vessel segment	-	Container	
Vessel size	-	8000 TEU	
Number of vessels	-	1	
Lifetime of corridor	Years	25	
Average vessel speed	Knots	18	
Cargo per vessel	TEU	8,000	
Cargo value	USD/TEU	50,000	
Distance for one roundtrip	Nautical miles	8,000	
Days at sea	Days	240	
Number of roundtrips per year	-	13.0	
Cargo utilization	%	65%	

Regulatory configuration	Unit	Value
Corridor carbon price	USD/tCO2eq	-
Willingness to pay from cargo owners/customers	% of cargo value	-

Customize the corridor configuration by adjusting the red cells.

The white cells are automatically filled based on input on the vessel segment and size. They are based on assumptions from the underlying data model but can be adjusted using the override function.

You can also test the impact of adding a **carbon price on the corridor** or adding a **willingness-to-pay** from the cargo owners/customers.

A. Input values: Corridor configuration – The model is backed up by a granular and robust data set including multiple vessel types

Granularity of data - selected elements (exemplary)

Vessels

- Container (3500 TEU) -
- Container (8000 TEU)
- Container (15000 TEU)
- Bulk carrier (Handy)
- Bulk carrier (Panamax)
- Bulk carrier (Capesize)
- Tanker (35k dwt)
- Tanker (100k dwt)
- Tanker (300k dwt)
- RoRo (4000 CEU)
- RoRo (7000 CEU)
- Gas Carrier
- Cruise (25k GT)
- Cruise (100k GT)
- Cruise (175k GT)
- Fast Ferry
- Ferry
- General Cargo
- Offshore
- Tug

 Yearly data points for Container vessels (3500 TEU) for the following parameters:
Nominal capacity
Days at sea
Average speed
Main engine thermal efficiency - MF Diesel
Main engine thermal efficiency - DF Methane
Main engine thermal efficiency - DF Methanol
Main engine thermal efficiency - DF Ammonia
Main engine pilot fuel share - MF Diesel
Main engine pilot fuel share - DF Methane
Main engine pilot fuel share - DF Methanol
Main engine pilot fuel share - DF Ammonia

B. Output: The summary report provides a summarized output from the corridor calculations including two main sections on emissions and cost

Summary report

 $\mathbf{\dot{\mathbf{+}}}$

C. Goal seeking: Examine simple ways to close the cost gap through a carbon price or willingness-to-pay

Goal seeking

Corridor configuration	Unit		Va	lue	Ove	rride
Bunker region	-		Eu	rope		
Year	-		20)25		
Vessel segment	-		Con	tainer		
Vessel size	-		800	0 TEU		
Number of vessels	-			1		
Lifetime of corridor	Years	3	2	25		
Average vessel speed	Knots	S	1	8		
Cargo per vessel	TEU		8,0	000		
Cargo value	USD/	TEU	50,	000		
Distance for one roundtrip	Nauti	ical miles	8,0	000		
Days at sea	Days		2	40		
Number of roundtrips per year	-		1;	3.0		
Cargo utilization	%		6	5%		
Regulatory configuration	Unit		Va	lue		
Corridor carbon price	USD/	tCO2eq		-		
Willingness to pay from cargo	owners/customers 3% of o	cargo value		-		
Close cost-gap to Option 1 by adding a carbon price	Close cost-gap to Option 2 by adding a carbon price	Close cos Option 3 by carbon	t-gap to adding a price	Close cos Option 4 by carbon	st-gap to / adding a price	Reset regula
Close cost-gap to Option 1 by adding a willingness-to-pay	Close cost-gap to Option 2 by adding a willingness-to-pay	Close cos Option 3 by willingnes	t-gap to adding a s-to-pay	Close cos Option 4 by willingnes	st-gap to / adding a s s-to-pay	configurati

Understand how the cost gap between Alternative fuel options 1-4 and the Baseline can be closed by using the green buttons to (1) add a carbon price or (2) add a willingness-to-pay for each of the 4 options selected in the fuel configuration.

The value cells in the two red cells in the regulatory configuration as well as the graphical output will be adjusted automatically based on the selected green buttons.

Consortium formation & goal definition	Customization & modeling	Baselining & agreement	
Consortium formation, incl. assignment of roles and project governance	Work scope definition	Green corridor project	
Project vision, goals, and requirements	▼ Project plan	baselining	
Conceptual scope drawing	Scenario modeling	Project commitment letter	

3G. Green corridor project baselining

Purpose

- Outline the **goals and objectives** for the Feasibility Study.
- The **technical session** provides context and background information in relation to fuel, ports, vessel, cargo dynamics, etc.
- The scenarios modeling provides an insight into, and discussion hereof, of the CO₂ abatement potential and incremental cost
- The document is an internal project document, which ensures an aligned partnership in advance of starting the Feasibility and signing the Project Commitment Letter.
- The document serves, in an updated version, also as **Chapter 1** in the Feasibility Study

Key questions

- What are the agreed project technical terms: project members, goal, objective, governance, etc?
- What are the **initial positions** on choice of fuel(s), port(s), vessel segment, for the Feasibility Study?

- Importance
- A common baseline document for all project members ensures an efficient and swift process for signing the Project Commitment Letter, as the baseline document outlines all relevant parts of the project.
- The document will **not be publicly available** and does not require a thorough review. It only serves as a common reference point for starting the project.

3G. Green corridor project baselining

	Methodology – steps	Inputs
01	Describe the project's vision, goals, and requirements in detail to identify the desired target state.	Feasibility Scoping [Methodology 1A]
02	Identify sources of alternative fuel best suited to meet future demand, considering import options, announced projects, etc	What are the potential alternative fuels and sources best suited for the corridor?
03	Assess the current and expected storage and bunkering infrastructure for the corridor (based on geography, fuels, segment, volume, etc.)	Which are the key ports and what are their respective bunkering & storage infrastructure?
04	Understand the administrative scheme in place within the green corridor	Which tax and tax exemptions are applicable? What are the laws and who are the relevant authorities for handling/bunkering?
05	Specify the technical characteristics of vessels in the corridor (incl. types, sizes, ages, fuel consumption, voyage characteristics)	What are the key technical characteristics of the vessels expected in the green corridor?
06	Describe the high-level trade flows, incl. type (cargo types), nature (e.g., origin-destination), ownership , etc.	What is the nature of the trade flows and the end-customer characteristics related to the corridor?
07	Estimate the CO ₂ abatement potential and cost gap to be closed. Define the target state and compare with a fossil-based 'current state'	Feasibility Scoping [Methodology 2F]
08	Summarize key insights into a corridor project baseline that can serve as the starting point for the Feasibility assessment (max 10 pages)	

A. Describe the vision, goals, and requirements of the Feasibility Study

 Methodology – steps
 Inputs

 i
 Describe the desired target state in a foundational narrative
 Conversations with key project stakeholders

 Output from Pre-Feasibility Study

- Create a **Scoping factsheet** with key data on fuel, port, bunkering, and storage, as well as regulatory factors, and update it as more insight is acquired
- Conversations with key project stakeholders

iii Describe the project's vision, goals, and requirements as precisely as possible

- Combination of the above

Refer to project vision, goals, requirements, and narrative guideline

B. Identify sources of alternative fuel best suited to meet future demand

Methodology-steps	Inputs
i Fuel demand of decided alternative fuel(s): Create high-level estimate for future demand for alternative fuel(s) over time for the specific corridor	 Expected fuel consumption for vessels operating on specific corridor Distance of corridor Days at sea / days at port
 Create overview of existing and planned alternative fuel production sites for relevant fuel (near corridor/import to corridor = intra-regional) (overview by volume, type, capacity, operator, and location) Align with workstream lead if already defined 	 Current and expected projects by company, production levels and maturity level for agreed fuel type(s) Location of expected production sites and import routes to corridor
iii If intra-regional fuel is not an option or uncertain, provide insight into timing, and assess capacity and cost of extra-regional fuel	Literature / announcement screeningTransportation cost
iv Estimate the cost of the alternative fuel to be used for the specific corridor on a high level Use Fuel Cost Calculator if no known cost is available	 Estimates from literature Input from early consortium partners
V Select potential sourcing and type of alternative fuel to be used in the green corridor Align with workstream lead if already defined	– Combination of above

Illustrative examples

C. Assess the current and expected storage and bunkering infrastructure along the corridor

Methodology-steps	Inputs		
i Describe port ownership and operatorship structures relevant for the specific green corridor. Describe geographical conditions for relevant ports (weather, depth, etc.) as well as limitations (to expansion or fuel handling)	 Ownership structure (e.g., state-owned, private) Port operators Existing agreements between operator/owner Geography of ports Description of possible limitations to expansion (e.g., protected land) 		
ii Identify current storage, loading/unloading & bunkering options for ports along the specific corridor	 Bunkering operators Assessment of fuels and chemical handled in the port Description of onshore and marine bunkering/storage infrastructure by fuel type (fuel oil, bio-oil, LNG) Chemical types handled (especially NH₃, CH₃OH, CO₂, H₂) Description of current and expected capacity 		
iii Create overview of quantitative / qualitative port readiness level assessment along with planned future investments in facilities and other future plans for relevant ports along the specific corridor	 Quantitative port readiness level assessment based on WPCAP guideline and/or qualitative port assessment to determine port readiness Description of strategies and any planned additions to infrastructure 		
iv Estimate high-level CapEx and OpEx for the selected ports to establish and operate the infrastructure (storage & bunkering) for the alternative fuel	 Input from literature and/or announcement Possibly Input/QC'ed by Scoping Project members 		

Illustrative examples

D. Understand the administrative scheme in place within the green corridor

The administrative scheme within the green corridor encompasses several key aspects, including taxation/exemptions and handling/bunkering permissions.

Methodology-steps

Determine the taxation status of alternative fuels versus fossil fuels, and whether taxation applies to fuel consumption during **domestic navigation** versus international navigation (tax exempted).

Understand handling and bunkering permissions. This will involve inquiries into applicable laws and jurisdictions, identification of authorities responsible for overseeing the use of new fuels (such as but not limited to: port authorities, operators, coast guards, or ministries).

Find out whether land-based facilities fall under the purview of the same agencies.

These considerations are vital for navigating the **regulatory landscape** and **ensuring compliance** within the green corridor.

 1.350
 STATE OF SOUTH CAROLINA DEPARTMENT OF REVENUE
 ST-8 (Rev. 7/14/16) 5009

 Purchaser's Name
 Date
 Date

 Purchaser's Name
 Date
 Date

 Signature
 Signature
 Amount of Sale \$

 Address
 Certificate to SC Department of Revenue.

The undersigned hereby certifies that the purchases of tangible personal property made under this certificate are made in accordance with the exemption checked below, that in the event the property so purchased is used for purposes other han specified, the purchaser assumes full liability and must file a return and pay the tax due thereon.

Description of tangible personal property purchased

Illustrative example of exemption certificate

Illustrative example of trade and forfaiting flow

 $\langle \mathbf{\bullet} \rangle$

E. Specify the technical characteristics of vessels in the corridor

Methodology-steps	Inputs
i Describe current vessel routing behavior on the corridor. Estimate future changes (if any)	– Schedules, number of trips, etc.
ii Create overview of owner(s) and operator(s) of vessels active on the specific corridor	– Literature/Internet search
iii Develop overview of number and type of vessels operating on the specific corridor. Estimate development scenario of specific corridor to fully decarbonize	 Number of vessels by size (e.g., handysize, capesize) Number of vessels by age (e.g., newbuild, 10+ years) Expected vessel newbuilds (order book)
iv Identify technical profile of vessels 1) currently active on specific corridor and 2) to be active on alternative fuel	 Propulsion technologies, engine systems for current and future vessels
V Estimate annual fuel consumption on green corridor based on high-level assessment of annual fuel consumption for vessels on specific corridor	 Number of ships along corridor by size Preferred fuel type Average fuel consumption by size
Vi Calculate corridor emissions per vessel/cargo unit for vessels 1) currently active on specific corridor and 2) to be active on alternative fuel	 Vessel annual fuel consumption Emissions factor to convert fuel to resulting emissions
Vii Estimate high-level CapEx and OpEx for the specific number of vessels in both a fossil and alternative version	 Input from literature and/or announcement Possibly Input/QC'ed by Scoping Project members

Illustrative examples

F. Describe the high-level trade flows, including type, nature and ownership

G. Estimate the green corridor's $\rm CO_2$ abatement potential and cost gap to be closed

Methodology-steps	Inputs	
i Assess the total cost (CapEx + OpEx) of the specific corridor on traditional fossil fuel and on the proposed alternative fuel based on insights from each value chain element	 1.2.D, E output 1.4.G output Green Corridor Scenario Modeling tool 	Σforeal Const
ii) Estimate the incremental cost of green for each of the value chain elements as well as the total incremental cost of green	 – 1.2.D, E output – 1.4.G output – Green Corridor Scenario Modeling tool 	Cost of fossil fuel-based control
iii Identify the CO ₂ abatement potential and incremental cost of green per cargo unit and compare to total cargo value	 The above and 1.4 output Green Corridor Scenario Modeling tool 	
W Make 'inverse calculation' to estimate 1) the needed pricing on CO₂ to break even 2) the incremental cost per cargo unit	 Combination of above Green Corridor Scenario Modeling tool 	

Illustrative examples

H. Summarize key insights into a corridor baseline document

1	Description of the target state — including vision, goals, and requirements for the green corridor — conceptual drawing of scope and workstream delineation
2	Recommendation of the alternative fuel to be used in the green corridor, including its required volume, if possible, its source / feedstock and its production location
3	Description of current port, storage and bunkering infrastructure along the green corridor, including current capacity, as well as the future target port, storage and bunkering infrastructure , including necessary capacity
4	Overview of the administrative scheme in place within the green corridor
5	Overview of current and expected low/zero carbon emission vessels in the corridor, including their specific characteristics and emissions

6

Understanding of trade flows, cargo type, volume and value, cargo owners and consumers

Potent initial vi

Potential CO_2 abatement, initial total cost estimate (CapEx and OpEx over 25 years) as well as an initial view on the incremental cost of green

Suggested structure of the chapter in the final report

- 1. Introduction and project framework, incl. project vision, goals, and requirements, an initial view on key findings and the incremental cost gap
- 2. Alternative fuels supply chain
 - A. General overview
 - B. Specific to the project
 - C. Preliminary cost assessment
- 3. Port and bunkering infrastructure
 - A. General overview
 - B. Specific to the project
 - C. Preliminary cost assessment
- 4. Overview of administrative scheme
- 5. Low/zero emission vessels
 - A. General overview
 - B. Specific to the project
 - C. Preliminary cost assessment
- 6. Cargo demand dynamics
- 7. Summary
 - A. CO₂ abatement potential
 - B. Incremental cost
 - C. Next steps

 $\langle \mathbf{\bullet} \rangle$

Consortium formation & goal definition	Customization & modeling	Baselining & agreement
Consortium formation, incl. assignment of roles and project governance	Work scope definition	Green corridor project baselining
Project vision, goals, and requirements	Project plan	Project commitment letter
Conceptual scope drawing	Scenario modeling	

Page 74

3H. Project commitment letter (PCL)

Purpose

- The PCL outlines mutual intentions for collaborative efforts in the Feasibility Study.
- The parties commit to carry out the Feasibility Study phase. **No financial commitment**, beyond possible minor analysis and surveys, if deemed necessary, to document feasibility.
- It does not create legally binding obligations, except for the confidentiality provisions.
- Establishes a **framework** for ongoing discussion and cooperation.
- Articulates **general principles and objectives** guiding the parties.

Key questions

- Is it **necessary** to include a PCL in the Feasibility Scoping Phase?
- What are the **general principles** and objectives articulated in the PCL?
- How does the PCL handle legally binding obligations, particularly regarding **confidentiality provisions**?
- What is the **prerequisite** for project team members to sign the PCL regarding the completion of other activities in the Feasibility Scoping Phase?

Importance

- The PCL is an **optional element**; it determines the **end** of the **scoping** phase.
- Could be required when **public announcements are expected**, or **mutual intention** of formalization is desired.
- Serves as a **point of reference** for guiding principles, conditions, and responsibilities.
- All **other activities** in the Feasibility Scoping Phase must be **completed** for project team members to sign the PCL.

3H. Project commitment letter (PCL)

3

	Methodology – steps	Inputs
01	Create initial version of the PCL based on the template	Feasibility Scoping Methodology/ PCL guideline
02	Review and adjust the wording with lawyers / legal teams of all project members	Input from lawyers/ legal teams of project members
03	Review and adjust the project description with project members	Input from project team members
04	Finalize and sign the PCL	Outcome of the above
(

The Project Commitment Letter is set up by the Project Lead and reviewed by all project members

Project Lead to create initial version of the PCL based on template Project Lead to share initial version of the PCL with Workstream Leads

Legal teams of the Workstream Leads **review** the provisions of the PCL, while project team members of the Workstream Leads **review the project description**

The **feedback is then iterated** between the Project Lead and the Workstream Leads

Eventually, the Project Lead finalizes the PCL and sends it to project team members for their signature

The Project Commitment Letter includes two parts: (1) The terms and (2) the project description

1) Legal terms

- A list of signing parties (company details)
- A short description of each signing party
- 1. Background
- 2. Validity and Legal Effect
- 3. Documents
- 4. The study
- 5. Contemplated Agreement
- 6. Confidentiality
- 7. Publication
- 8. Non-exclusion
- 9. Term and Termination
- 10. Choice of Law and Dispute Resolution
- 11. Signatures

To be reviewed by legal teams of project members

2	Sch	edule (PD) Project Desc	ription
1. 2.	Introd The F A. B. C.	duction Project Project overview Project vision Project goals	1.1. Describe the vision, goals, and requirements of the Feasibility Study
	D. E. F. G.	Project requirements Scoping factsheet Project timeline Project organization	2.2 Develop a project plan in accordance with the previously defined Work Scope Definition
	H. I. J.	Roles and responsibilities Project supervision Project conduct	1.2. Identify and engage potential project members and align on their roles and level of involvement
3. 4.	Comi Finan	mitment and contribution ice and budget	

To be reviewed by participating project team members

Internal

1. Legal terms – Overview of key messages (1/2)

Section in the PCL	Key content/ messages	
1 Background	By signing this PCL, the Parties confirm their strong intentions of initiating the collaboration in order to carry out the Feasibility Study	
2 Validity and Legal Effect	This PCL is solely an expression of the Parties' intentions and shall not constitute any legally binding obligations for the Parties, except for the confidentiality obligations	
3 Documents	The Schedule [PD] (Project Description) is an integral part of this PCL and all references made to this PCL include a reference to the Schedule [PD] Project Description	
4 The Project	The "Project" shall mean the project governed by this PCL as described in Schedule [PD] Project Description	
5 Contemplated Agreement	Should the Parties, during the term of this PCL, decide to legally formalize their collaboration in the Project, the following agreement is expected to be entered into between the Parties ('Contemplated Agreement'):	
	(i) Project Agreement governing the Parties' collaboration in the Project	
6 Confidentiality	The Parties are obliged to keep confidential any information that is exchanged between the Parties in connection with the Project and that is explicitly and clearly marked as confidential upon disclosure	
	Where disclosure is required by law, prior to such disclosure the receiving Party shall consult with the disclosing Party in good faith about the terms of the receiving Party's disclosure of the disclosing Party's confidential information	
	The confidentiality obligations set out in Section 6 will survive termination of this PCL for a period of 2 (two) years from termination of this PCL for a period of 2 (two) years from termination of this PCL	

1. Legal terms – Overview of key messages (2/2)

Page 80

Section in the PCL Key content/ messages

7	Publication	For the purpose of this PCL, "Publication" means (i) the publication of an abstract, article, study, paper or similar in a journal or in other public domains, (ii) presentations at a conference, seminar or other public domains, and (iii) any other disclosure that is meant to inform or present a certain topic to a wider group of recipients or unidentified audience, and "Publish" and "Publishing" are to be construed as meaning the same
		Joint publication: The Parties shall in good faith discuss a joint initial Publication of the Project results and the general principles for references to the Parties' involvement in this Project
		Required Publication: Subject to the confidentiality obligations contained herein, the requirement for publicity shall be honored in good faith by all project participants.
8	Non-exclusive	This PCL is non-exclusive and nothing in this PCL shall prevent or restrict a Party from entering into identical or similar arrangements, letters of intent and/or agreements with any other persons or entities
9	Term and Termination	 Start date: When all parties have signed the PCL, counting from the date of the Party signing last in time ('Effective Date') End date: If the Parties enter into the contemplated Agreement or a similar agreement governing the Project:
		 PCL automatically terminates when the Project is completed PCL automatically terminates on a fixed 'Expiration Date'
		 If the contemplated Agreement is not entered into or the Project is not completed 30 calendar days prior to the Expiration Date, and upon notice from a Party to the other Parties, the Parties agree to enter into good faith discussions for an extension of the term of this PCL
10	Choice of Law and Dispute Resolution	TBD by the Parties, including to what extent this section should be made legally binding

2. Schedule (PD) Project Description – Overview of key messages

Section in the PCL	Key content/ messages		
1 Introduction	This Schedule [PD] sets out the main parts of the Project details. Including the Project Title		
2 The Project	 A. Project overview B. Project vision C. Project goals D. Project requirements E. Scoping factsheet F. Project timeline G. Project organization H. Roles and responsibilities I. Project supervision J. Project conduct 1.1. Describe the vision, goals, and requirements of the Feasibility Study 1.1. Describe the vision, goals, and requirements of the Feasibility Study 		
3 Commitment and contribution	The Parties have committed to contribute to the Project by providing the human, financial and/or material contributions on those terms set out in this PCL (e.g., workstream internal meetings organized by Workstream Lead, status meetings with the whole project team, workshops with the whole project team)		
4 Finance and budget	Each Party shall be responsible for, and pay all costs associated with, the performance of its obligations under this PCL (e.g., for surveys or demonstrators)		
5 Reporting	The Parties will on a monthly basis, or as otherwise agreed, meet to report on agreed content		

An overview of signees and participating companies is required to set up the Project Commitment Letter – Template to be sent out to project members

Please share the information below by [insert date]:

Signees / Project Supervision / Key Personnel

- Name
- Job Title
- Company
- E-mail address / Mobile number

Companies

- Full Registration Name
- Company reg. no.
- Address
- Postal Code
- Country

Project Commitment Letter (PCL)

 $\langle \mathbf{\bullet} \rangle$

EL PANDIN

Congratulations on successfully completing the Feasibility Scoping Phase of your green corridor project!

This milestone signifies the establishment of a dedicated team with clear governance and assigned roles. A comprehensive project vision is articulated and substantiated with conceptual drawings, providing a visual representation for the green corridor project members. Additionally, the project team has shared key metrics regarding CO₂ abatement and the incremental cost of adopting green fuels. An agreement is formalized among project members, outlining project description and legal terms.

What comes next?

With this foundation in place, the stage is set for the Study phase to begin. During this phase, a thorough assessment of fuels, ports, vessels, and cargoes will be conducted, culminating in the final consolidation and edition of the project roadmap.

Simply click here to access the ready-to-use methodology for the next step in your green corridor journey.

Disclaimer

This Methodology is provided "as is" without any warranty of any kind, express or implied, including but not limited to merchantability, accuracy, completeness, or fitness for a particular purpose. Any reliance you place on this Methodology is strictly at your own risk.

While every effort has been made to ensure the accuracy and effectiveness of the content, Fonden Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping shall not be liable for any errors or omissions in the content, nor for any loss or damage arising from the use of the Methodology.

This report is based on analysis which McKinsey & Company contributed to.

This work is independent, reflects the views of the authors, and has not been influenced by any business, government, or other institution."

Visit our website for more: www.zerocarbonshipping.com