
METHODOLOGY

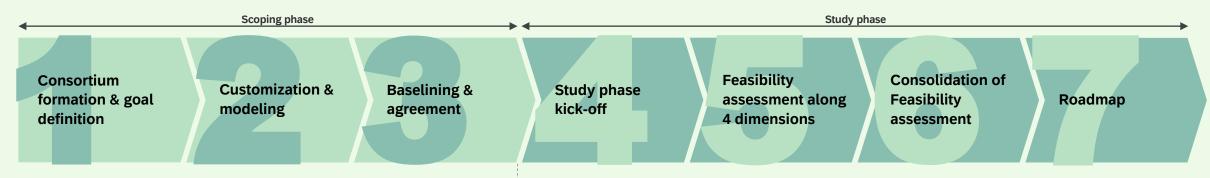
Green Corridors Feasibility Scoping Phase

Expected outcomes of Feasibility Scoping phase

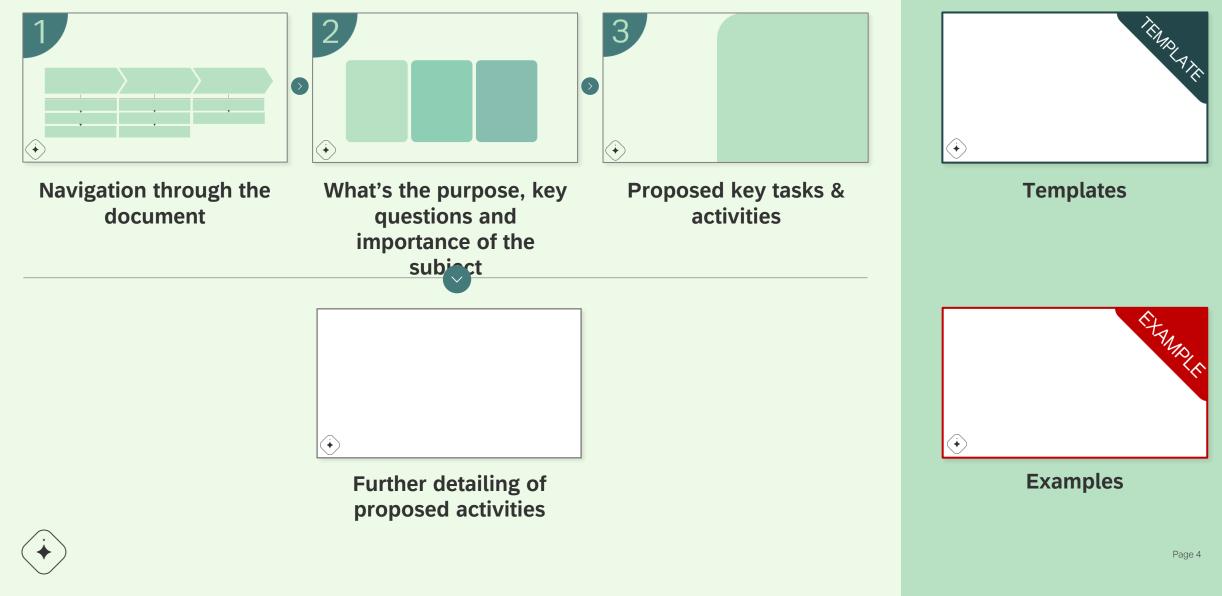
The Pre-Feasibility phase ended with the core consortium selecting the projects that looked most promising on the basis of the interest and commitment intentions from stakeholders. These projects will now move into the Feasibility phase for further maturation.

In the Feasibility phase, every green corridor project will undergo a rigorous evaluation to determine its technical, regulatory, and economic feasibility. This assessment is crucial as it provides team members with a comprehensive understanding of the potential for CO_2 abatement and associated costs, thereby enabling them to finalize an implementation roadmap and committing further resources to a green corridor project.

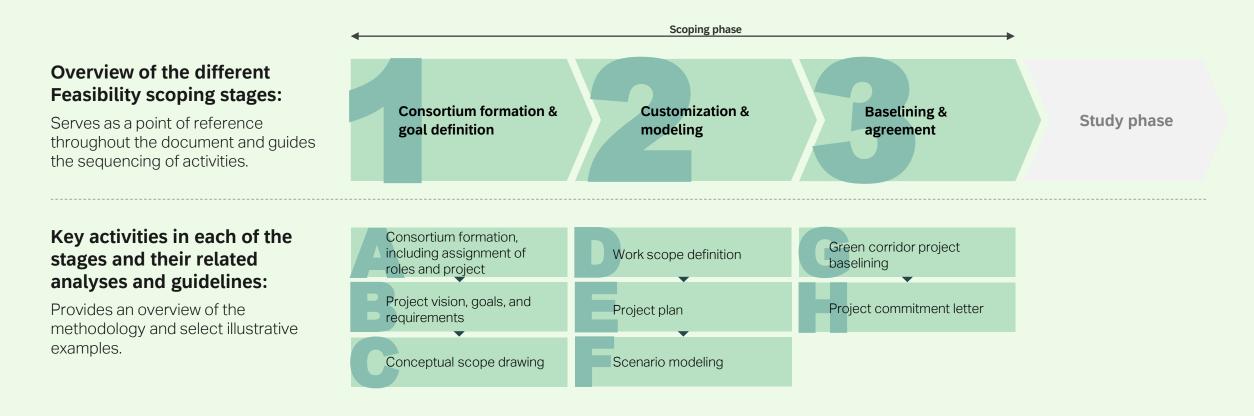
To streamline this process, Feasibility methodologies offer project teams guidance in conducting evaluations and fostering collaboration throughout the alternative fuel supply value chain.


The scoping phase outlined here emphasizes the structure of the project: forming a consortium, defining the scope of work, and establishing formal project descriptions and legal terms in the Project Commitment Letter (PCL).

When these steps are complete, the project will transition from the scoping phase to the study phase. The project team will have a clear direction and framework for the project. This minimizes the risks of undertaking the project and maximizing its potential for success, which, in turn, enhances its attractiveness for further investment and implementation.


The Feasibility Phase

The Feasibility Scoping Phase serves the purpose of **forming a consortium** and **agreeing on roles** for project team members as well as **ways of working** in the Feasibility Study. It also clearly **defines the focus and goals of the Feasibility Study phase** as well as the **work that needs to be done** for a specific corridor to reach these goals. The Feasibility Study aims at assessing the technical and regulatory feasibility of a specific green corridor along the fuel, port, vessel, and cargo dimensions as well as defining the residual cost gap. It further includes a risk registry and roadmap, both of which are outlined together with the consolidated findings of the Feasibility Study.


Project Commitment Letter

How this document is constructed

The Feasibility Scoping phase in detail

This phase consists of three main stages. In this document, all main stages are explained step by step.

 $\langle \bullet \rangle$

Purpose

- The initial core consortium identifies and engages with new members to fill potential gaps in the consortium.
- The Project team agrees on main elements for the upcoming Feasibility Study:
 - o Vision, scope, goals, and narrative
 - Project governance
 - Work scope by customizing blueprint
 - o Project Plan
 - o Initial corridor modeling
 - o Project baseline
- Project members start working at this stage without any legal binding agreement, and only have a standard non-disclosure agreement. They will later prepare a PCL.
- The scoping phase is divided into three steps, each with a clear objective to allow the actual Feasibility Study to be as constructive and add as much value as possible.

Key questions

- The key questions are related to the upcoming Feasibility Study and can largely be divided into classic WH-questions:
 - o Why
 - Project Vision and narrative

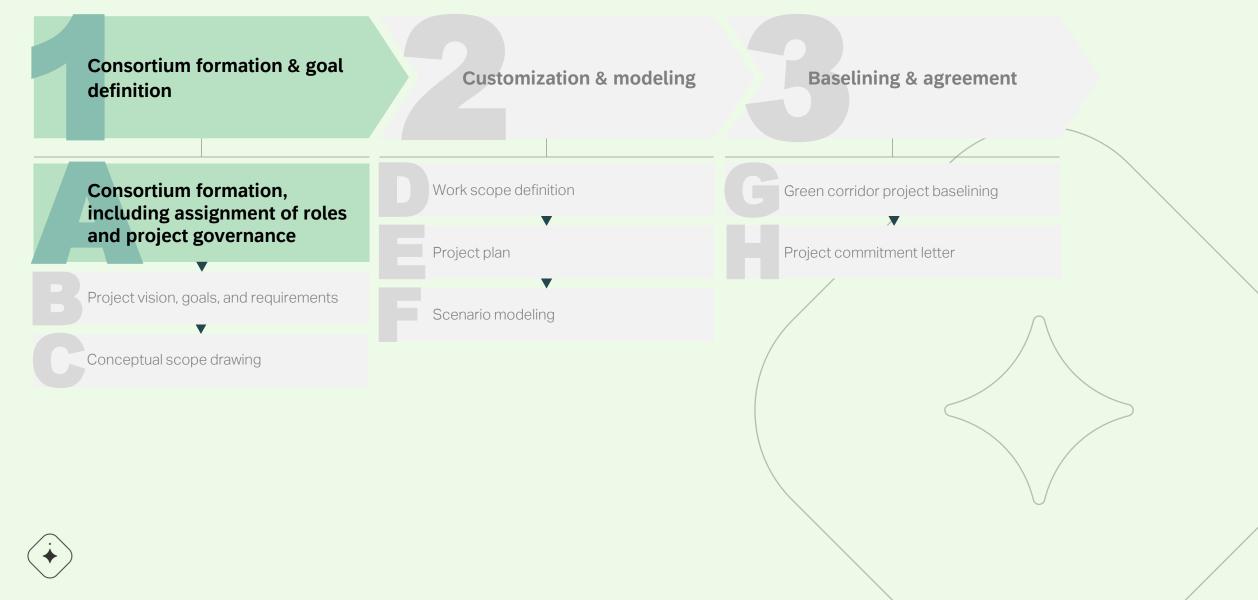
h

- o Who
 - Project consortium
 - Project governance
- o What
 - Project scope and goal
 - Work scope definition
 - Corridor modeling
 - Project baseline
- o When
 - Project Plan

Importance

- With the Scoping phase successfully completed, the project consortium can start studying whether or not the project scope is feasible on technical and regulatory levels. The consortium can also assess the economical perspective, including the residual cost gap, and the Just & Equitable characteristics.
- A successful Feasibility Scoping phase clarifies and concretizes the tasks and responsibilities within the project. This ensures that the Study phase goes smoothly.
- Having a clear definition of roles and responsibilities for the upcoming Feasibility Study enables the project consortium to collaborate efficiently.

+


Key activities: Feasibility Scoping Phase

Phases	Key	/ questions	Key
1. Consortium formation & goal definition	Ι.	Who are the relevant stakeholders who should be involved during the Feasibility Study and how will the project team work together?	1.1
	II.	What are the vision, goals, and requirements for the upcoming Feasibility Study of the specific corridor?	1.2
	.	What does the upcoming Feasibility project look like from a conceptual drawing point of view? (Methodology 1.C)	1.3
2. Customization & modeling	Ι.	Which activities and analyses should the Feasibility Study cover? And what is the expected duration?	2.1
	II.	What does the timeline of the Feasibility Study look like?	2.2
	III.	What are the estimated CO₂ abatement and high-level costs of the green corridor?	2.3
 3. Baselining & I. What are the key characteristics of a spe agreement corridor? 		What are the key characteristics of a specific green corridor?	3.1
	II.	How will the project team formalize its collaboration/	3.2

cooperation during the Feasibility Study?

Key activities

1.1	Identify and engage potential consortium members , align on their roles and level of involvement (manhours in Feasibility Study), as well as defining project governance.
1.2	Describe the project's vision, goals, and requirements in detail to identify the desired target state, including key considerations for a Just & Equitable Transition, for a specific corridor.
1.3	Make conceptual drawing of project and highlight numbers and types (fuel, renewables, etc). Define workstream delineations.
2.1	Develop Work Scope Definition by customizing the Feasibility Study Methodology based on previously defined vision, goals, and requirements. Estimate manhours needed for main activities.
2.2	Develop a project plan in accordance with the previously defined Work Scope Definition.
2.3	Refine the Green Corridor Scenario Modeling tool to generate initial view on the CO ₂ abatement potential and incremental cost of green.
3.1	Consolidate knowledge in a corridor baselining document to create initial view on relevant fuels , port and bunkering infrastructure, relevant vessel characteristics and trade flows , as well as the CO₂ abatement potential and costs associated with the
3.2	specific corridor. Set up the Project Commitment Letter , including a section on legal terms and a description of the project.

1A. Consortium formation (including assignment of roles and project governance)

- Build on initial stakeholder interest.
- Identify additional stakeholders who can execute projects in the Feasibility Study, after agreeing on roles and level of involvement.
- **Identify gaps** in the consortium and propose including more stakeholders who can close these gaps.
- Create a project organization with responsibilities for each project member as well as define an overarching project governance.

Key questions

- Who are **relevant stakeholders** to involve during the Feasibility Study and how will the project team work together?
- Who should be added to consortium to increase probability of success of the Feasibility Study?
- Are all project participants aware of their **expected commitment**?
- Have project participants **reserved the manhours** needed for the Feasibility Study
 phase?

Importance

- The consortium provides the specific expertise and knowledge that can be leveraged during the Feasibility assessment.
- Roles and project governance need to be clarified and agreed on to ensure a smooth execution of the Feasibility Study and to instill accountability for the workstreams conducting the Feasibility Study.
- The consortium formation and governance is best ensured by using a common and shared Methodology.

1A. Consortium formation (including assignment of roles and project governance)

Methodology-steps	Inputs
A Create an initial core team for the project	 Conversations with stakeholders with commercial interest Consortium Incubation Workshop
B Outline project governance and agree on roles for consortium members in an iterative process as the project team is formed	 Conversations with project team members Initial manhour commitment for study phase
C Conduct a consortium gap analysis to identify workstream gaps in the consortium, identify additional members and agree on	 Conversations with project team members and relevant stakeholders Workstream Leads to consider Workstream Support
D Finalize the consortium	 Combination of the above

Contract Lenguises

Page 10

3

The consortium formation

Consortium is formed in an iterative process in parallel to other scoping activities


This typically includes a small subset of participants from the value chain that showed interest (e.g., during the Consortium Incubation Workshop) and/or stakeholders that approached one/more members of the core team. Agree on rotes for consortium members (Workstream Lead, Workstream Support, Sounding Board) for the upcoming Feasibility Study phase based on their commitment level, interest and expertise.

See also the commitment assessment in Pre-Feasibility Phase Methodology. Select **additional** potential consortium members in a **step-wise** process based on

level of commitment, interest and expertise, and align with the core team on the selection. Consider community/ worker representatives and nongovernmental organizations. Signing of Project Commitment Letter/NDA to ensure safe space for sharing sensitive data within the consortium.

Continuously adjust consortium as more insights are generated and goals evolve (the initial core team can already start with activities in the Scoping Phase before the consortium has been finalized)

(i)

1. The Workstream Lead of Workstream 6 is automatically the Project Lead

2. The need for support is decided upon by the Workstream Lead. The roles and responsibilities are to be clarified early on

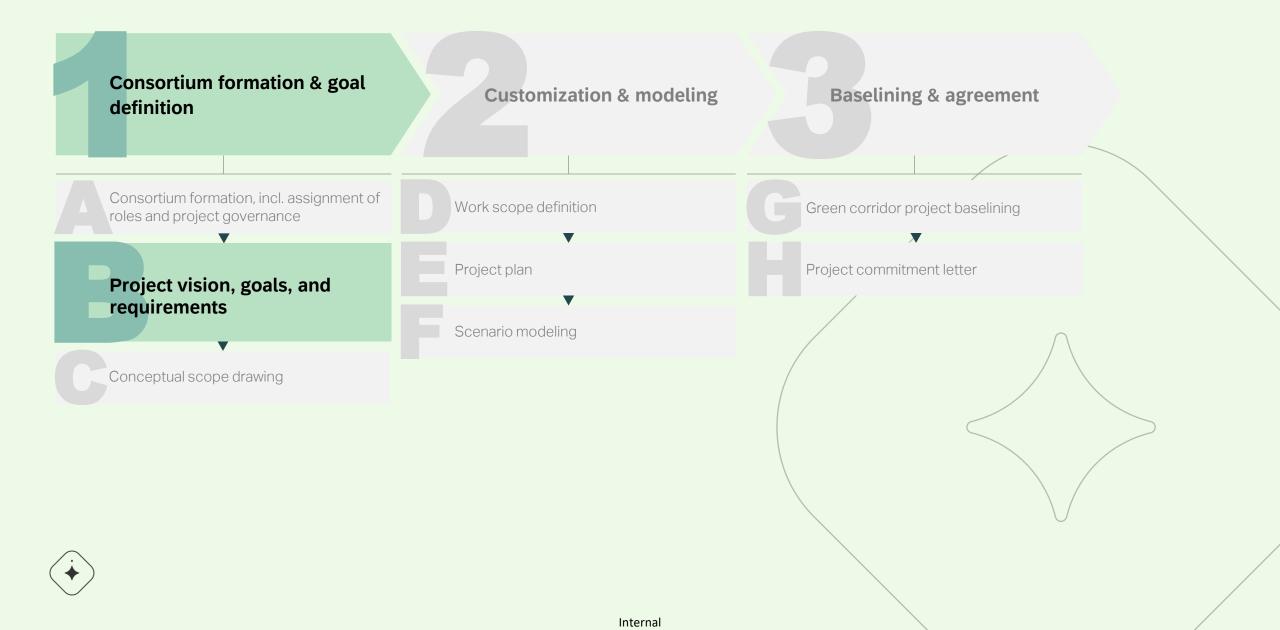
Suggested set of responsibilities for each group of stakeholders

Role		Responsibilities	Resources required (hours)
	Project Lead (Workstream 6)	 Lead, plan and coordinate the project Provide guidance on processes/frameworks/methods/templates to ensure consistency and quality across workstreams and, due to its overseeing role, cannot take the role of Workstream Lead 2-5 Lead the consortium formation Gather and synthesize findings from the Feasibility study (Workstreams 2-5), including technical, regulatory, as well as cost assessments 	1,000-2,000
ĨŃ	Workstream Lead (Workstream 1)	• Take responsibility for the corridor baselining , including a preliminary assessment of the corridor's technical and regulatory feasibility as well as its costs (based on Pre-Feasibility findings)	100-250
ŤŕŮ	Workstream Lead (Workstreams 2-5)	 Take responsibility for a workstream, including coordination of workstream resources and activities Lead and oversee the workstream analysis with respective workstream members in accordance with defined scope, processes, and methods Gather, share, and analyze valuable information and data to assess the technical and regulatory feasibility as well as costs and summarize results in a report Identify project-related risks within the workstream area, and define and implement mitigating actions Liaise with Project Lead to align on deliverables (typically centered around and assessment of the technical and regulatory feasibility as well as 	400-800 ³⁾ Workstream support hours could be subtracted from this
	Workstreams Support ⁴ (optional)	 costs, and summary of results in a report) and define the desired outcomes Support the Workstream Lead in gathering and analyzing valuable information and data in the respective workstream to assess the economic and regulatory feasibility as well as costs, and summarizing results in a report Align with the Workstream Lead on required analyses and desired outcomes 	50-300 Should be seen as part of the total workstream support hours
ĨĤ	Workstream Lead (Workstream 7)	 Take responsibility for the workstream, including coordination of workstream resources and activities Aggregate findings from the Feasibility study and derive a roadmap which describes how the project can be brought forward that can be publicly shared with relevant stakeholders 	300-500
	Sounding Board	• Provide feedback and input throughout the project. Also covering non-technical matters such as environmental or social NGO, civil society, and workers groups.	10-30
$(\mathbf{\dot{\bullet}})$		irs needed for the entire workstream. If Workstream Lead is alone, it corresponds to Workstream Lead expectation s decided solely by the workstream leads	Page 13

Project Lead / Workstream Lead / Workstream Support dialogue

TEMPTA.

This template facilitates dialogue between the project lead, the workstream lead and the workstream support(s) by formalizing roles and responsibilities for executing or supporting actions across various workstreams.


It clarifies who will be accountable for specific tasks and evaluates their expertise at company, department, or personnel levels, thereby enhancing coordination and efficiency within the project framework.

	WorkStroum Bosonption		
Name of the Workstream			Today's Date
	Port & bunkering infrastructure		
Project Name			Planned Start
Warkstroom Load	Warkstroom Sunnart		Dispared End
Workstream Lead	Workstream Support		Planned End
Name / Department / email / Other contacts if any			
Name / Department / email / Outer contacts if any			
Significant Milestones (Dates) and Required Delive	erables		
Requested Result / Solution (incl. Completion Crit	eria)		
· · · ·	· · · · · · · · · · · · · · · · · · ·		
Critical Success Factors / Risks			
Detailed Activity Descriptions (Incl. All Involved / P	articipating Resources / Departments)	 	
		Competence (Co	mnany department Personnel levels)

Workstream Description

Detailed Activity Descriptions (Incl. All Involved / Participating Resources / Departments)			
		Competence (Company, department, Personnel levels)	

	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2	3	4	5		7
Vorkstreams	Corridor baseline	Alternative fuels supply chain	Port and bunkering infrastructure	Low/zero emission vessels	Cargo demand dynamics	Summary of technical and regulatory feasibility and cost assessments	Roadmap and commitments
Stakeholders	All stakeholders	Fuel producers	Port and bunkering operators	Shipowners and operators	Cargo owners	All stakeholders	All stakeholders
Vorkstream .ead Vorkstream Support	Fuel proc Trading c Logistics	potential stakeh	olders are:	d names of	 Shipowners a Cargo owners Investors 	and companies s ervices companies	
Sounding Board			ental or social NGO ed civil society or wo	should be include		ective without a commercial interest Region	nal

1B. Project vision, goals, and requirements

Purpose

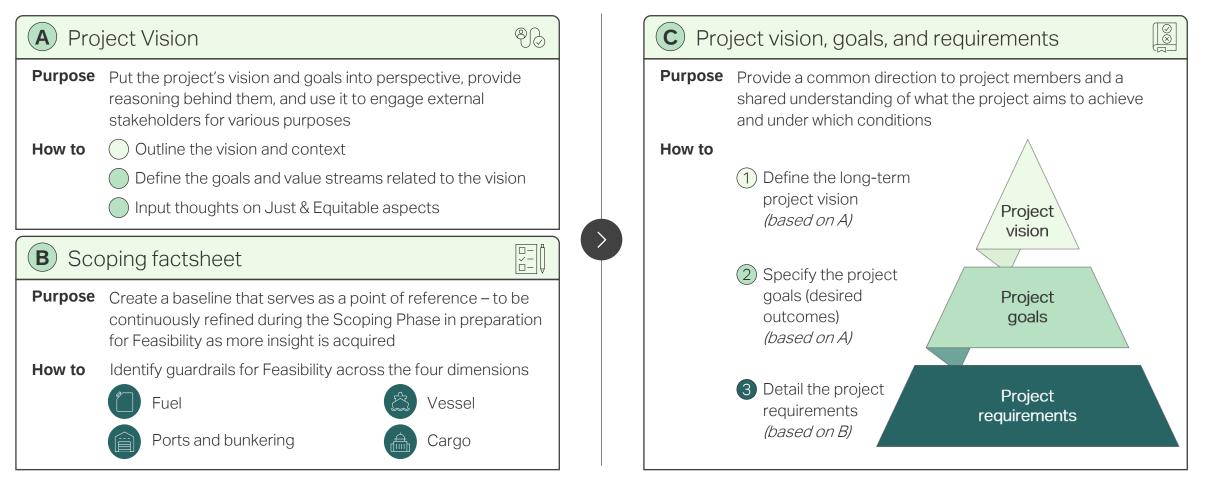
- Provide a sense of direction to the project team and create a shared understanding of what the project aims to achieve in the Feasibility phase.
- Describe the project's vision, goals, and requirements in detail to identify the desired target.
- **Offer input and guidance** for the entire Feasibility project.

Key questions

- What are the **vision, goals, and requirements** for the upcoming Feasibility Study of the specific corridors?
- Which are the important **focus areas** for the upcoming phases?
- What are the **desired outcomes**?
- Which **results** are key to proceeding to the next step?
- How do green corridors support the areas' overall social, ecological or economical goals and ambitions described in the vision?

Importance

- Establishment of a **clear** project vision, goals, and requirements for the Feasibility Study that will guide the consortium.
- Development of workstreams with **leads** and **support** (if deemed necessary) based on the requirements of the project.
- Ensures the alignment of stakeholders on the project's objectives. This alignment is vital for the success of green corridor projects.


1B. Project vision, goals, and requirements

Methodology – steps	Inputs
A Describe the desired target state	 Conversations with key project stakeholders Output from Pre-Feasibility Study, final list of green corridors assessment (1st Wave)
B Create a Scoping factsheet with key data on fuel, port, bunkering, and storage, as well as vessel and cargo. Update as more insight is acquired	 Conversations with key project stakeholders

C Describe the project's **vision**, **goals, and requirements** as precisely as possible - Combination of the above

3

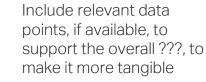
Each project requires a project vision, goals, and requirements, and a scoping factsheet

To be detailed further in an iterative process throughout the Scoping Phase

A. Project Vision

Vision and context

What is the overall vision and what recent developments does the project play into?



Goals and value streams related to the vision

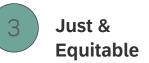
How does this project contribute to realizing the overall vision?

Just & Equitable How can the outcomes of the project be a positive driver for a Just & Equitable green transition

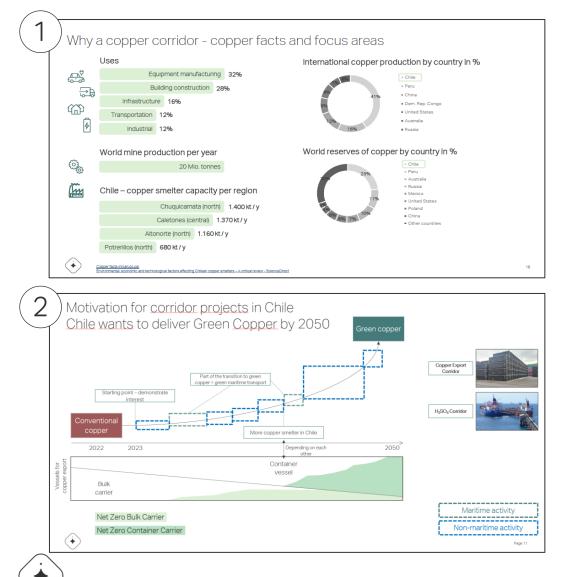
>

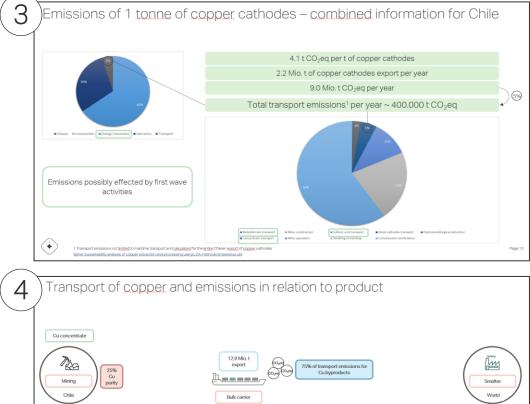
A. Example of a project vision – Chile

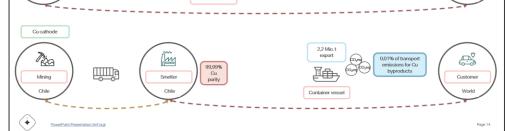
1 Vision and context


"Chile is recognized as one of the places in the world where **hydrogen will be produced at the lowest cost** (LCOH). As a consequence, the hydrogen derivate maritime fuels **ammonia and e-methanol are also expected to be produced at low cost in Chile**. Chile has therefore embarked on a Green Hydrogen Journey and wants to be a **key source of cheap renewable energy for the future**."

Goals and"Given seriesvalue streamsplarelated to thecruevisionChiven series


"Given its geographic configuration with more than 4,000 km coastline, the vast majority of the international import and export **takes place via maritime transport**. As the majority of the fuel to be produced in Chile will be ammonia (lack of sustainable CO2), **it is crucial for Chile to demonstrate that ammonia is a useful and safe fuel**.


Chile is the **largest copper exporter in the world**, and copper is one of the five critical elements for the Green Transition, and hence growth in the copper export is expected. At the same time, there is a growing interest for cradle-to-cradle emission for all products (especially amongst Western consumers). Chile is therefore keen to **explore the options for zero-emission copper production**."



This part has not been assessed during the Chilean Feasibility scoping phase as the specific J&E methodology has been developed by the Center post project start (2023)

A. Example of supporting material for project vision – Chile

EXPANOL.

B. Scoping factsheet for Feasibility – Template

	Source(s) of renewable energy :	[Size, capacity (MWh), Type (solar, windfarm)]
	Alternative fuels type:	[Name of fuel to be used in corridor]
4	Alternative fuels consumption per vessel per journey:	[Amount of fuel expected to be used in t/journey]
	Alternative fuels consumption per vessel per year (X journeys/year):	[Amount of fuel expected to be used in t/year]
	Alternative fuels transportation and infrastructure:	[How will fuel be transported from production site to port]
	Ports:	[All ports to be involved in the corridor]
	Storage:	[Location of storage]
	Bunkering:	[Type and location of bunkering]
A	Vessels:	[Type of vessels]
	Cargo:	[Type of cargo]
	Cargo per vessel per year:	[Amount of cargo in t/year]

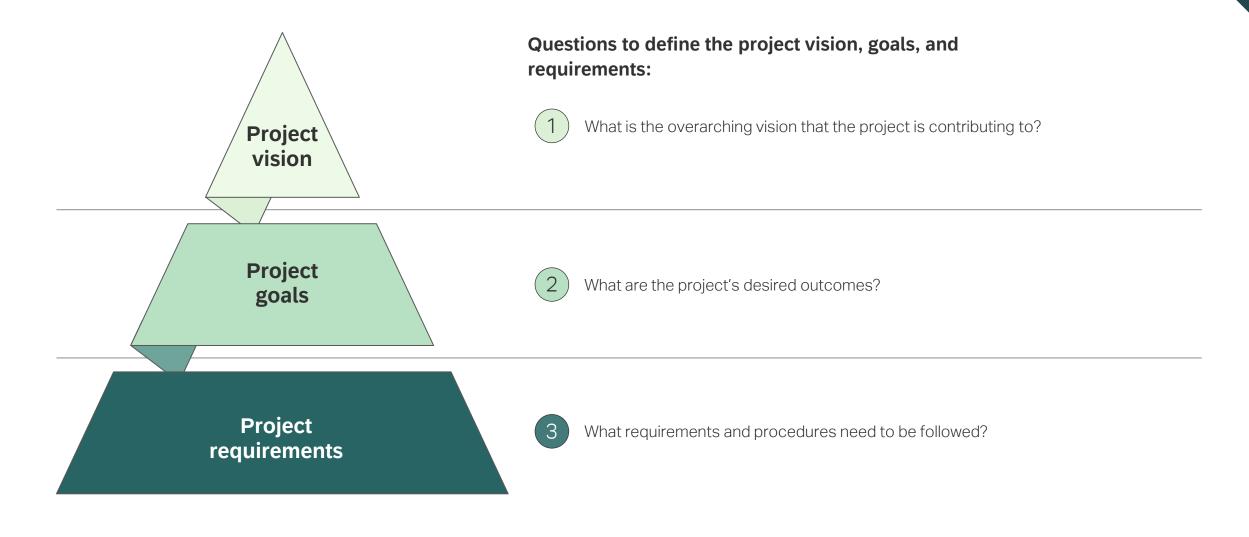
First vessel in water

All vessels decarbonized

To be detailed further in Feasibility Study

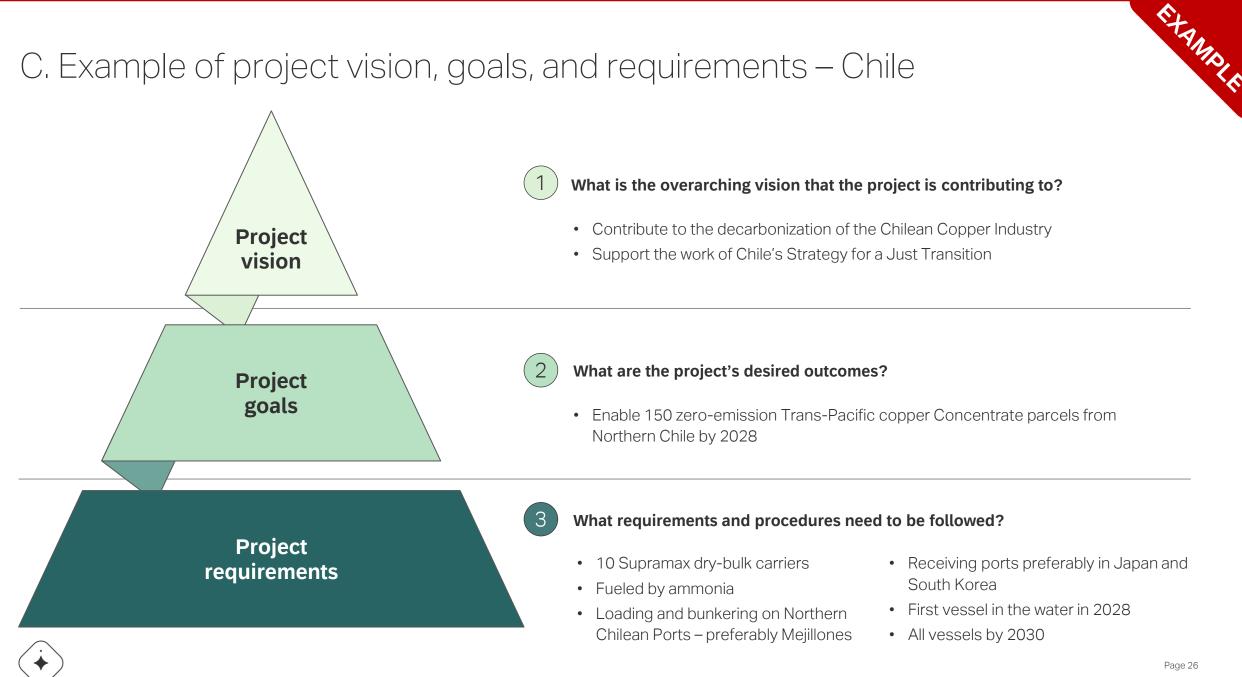
Internal

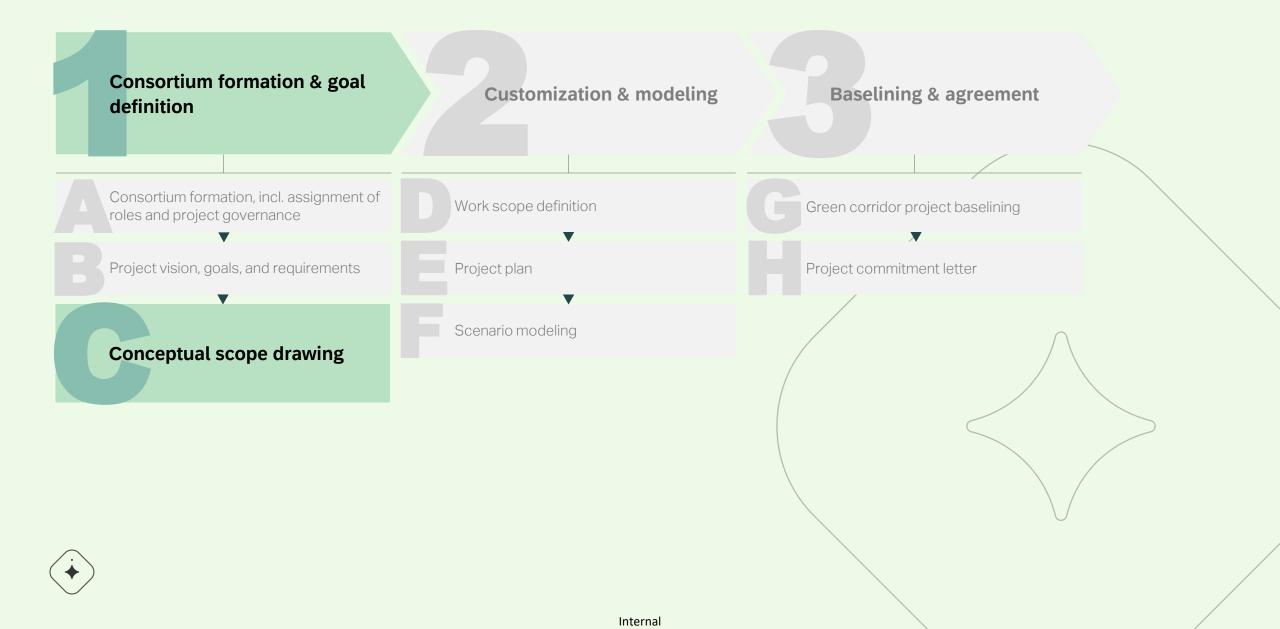
B. Example of scoping factsheet for feasibility – Copper export corridor with ten bulk carriers for the transport of copper ore / concentrate



Source(s) of renewable energy :

630 Ha, 420 MWac output, PV solar type


	Alternative fuels type:	Ammonia
	Alternative fuels consumption per vessel per journey	4.298 t
	Alternative fuels consumption per vessel per year (X journeys/year):	13.772 t
	Ports:	Puerto Angamos to Japan
	Storage:	Interacid / Puerto Angamos
	Bunkering:	Jetty or barge (Interacid / Puerto Angamos)
LL L	Vessels:	10 * 55.000 t Bulk Carrier (Supramax) with five parcels á 11.000 t (150 "green" parcels)
~	Cargo:	Copper Concentrate
	Cargo per vessel per year:	180.000 t Copper Concentrate
- lalala	First vessel in water	2028/2030
	All vessels decarbonized	2034


C. Project vision, goals, and requirements - Template

TEND FIL

C. Example of project vision, goals, and requirements – Chile

1C. Conceptual scope drawing

Purpose

- Provide a visual alignment of direction to the project team and create a shared understanding of what the project aims to achieve in the Feasibility phase.
- Serve as **one-figure-to-explain-it-all** slide of the project.
- Describe the agreed types/numbers/amounts within each workstream, and clearly outline the delineation between the workstreams – use scoping factsheet as basis.
- Can be used to agree on options/variations/scenarios to be considered and assessed in the Feasibility Study phase.

Key questions

- What is the **scope** of the upcoming feasibility study of the specific corridors?
- Which **types/numbers/amounts** are relevant for the individual workstreams:
 - o Fuel Group
 - o Renewable Area
 - o Renewable Type
 - o Electrolysis type
 - o Fuel Type & Feedstock
 - o Storage type
 - o Bunkering option
 - o Vessel Segment, Size, Engine
 - o Cargo Group and Type
- What is the **responsibility/delineation** of each workstream?
- What are the agreed options/variations/scenarios to be assessed?

- Establishment of a **clear visual description** for the Feasibility Study, which will guide the discussions in the project team.
- Ensures the alignment of stakeholders on the project's objectives. This alignment is vital for the success of green corridor projects.
- Ensures that work done in the individual workstreams, if **changed** from the initial scope, can be **discussed and aligned** with the relevant other workstreams.

1C. Conceptual scope drawing

Methodology-steps	Inputs		
A Fill out Scoping Drawing Questionnaire , to ensure that all elements are identified.	 Scoping Factsheet 		
B Create the Scoping Drawing by utilizing standard pictograms of essential building blocks for green corridor elements. Highlight connectors between each element and workstream.	 Scoping Drawing template and associated pictograms 		
Outline delineation between individual workstreams.	 Alignment with Workstream Leads 		
C Specify types, size, amounts for the different elements across the value chain.	 Scoping Factsheet 		
D Ensure alignment through Workstream Leads.	 Meeting/review with Workstream Leads 		
E The Scoping Drawing can also be used to outline options/variations to the Base Case Scenario	 Meeting/review with Workstream Leads 		

 (\bullet)

3

1.3 Scoping Drawing Questionnaire

Time

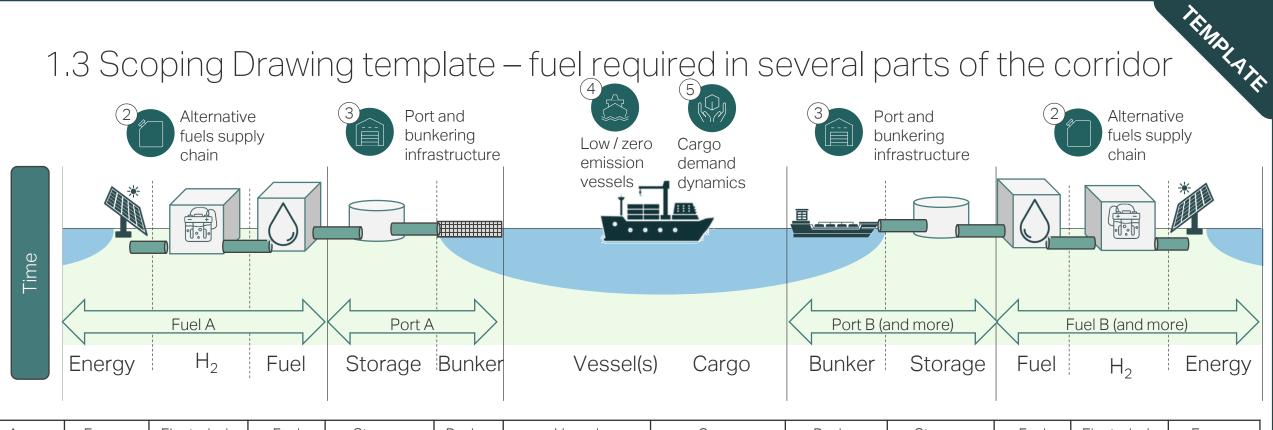
Port B / Fuel B

This is only relevant if roundtrip cannot be made on single fuel tank hold i.e. 'fuel at both ends needed'

	Tir	ne:			-	phases i	n the deve	elopment	of the I	orojec	;t										
	Fuel A					rt A - Bunkering	Vessel				Cargo		Port B - Call	Port B - Call & Bunkeri		ng Fuel B					
	Fuel amount A					Number of vessels					Ŭ			Fuel amount B							
Fuel Group	Renewable Area	Renewable Type	Electrolysis type	Fuel Type & Feedstock	Storage type	Bunkering	Vessel Segment	Vessel size (Gross Tonnage)	Vessel size (Cargo Tonnage)	Vessel Engine	Cargo Group	Cargo Type	Cargo	Calling / Bunkering	Bunkering	Storage type	Fuel Type & Feedstock	Electrolysis type	Renewable Type	Renewable Area	Fuel Group
e-fuel	Offshore	wind	Acidic (PEM: Polymer Electrolyte Membrane)	e-methane (point source)	Refrigerated	Jetty	Bulk Carrier	0-9999			Bulk	Ore			Jetty	Refrigerated	e-methane (point source)	Acidic (PEM: Polymer Electrolyte Membrane)	wind	Offshore	e-fuel
bio-fuel	Onshore	solar	Alkaline (AEL)	e-methane (direct air capture)	Pressurized	Barge	Tanker	10000-34999				Liquid			Barge	Pressurized	e-methane (direct air capture)	Alkaline (AEL)	solar	Onshore	bio-fuel
blue fuel		hydro	Solid oxide electrolyser cells (SOEC)	e-methanol (point source)	Ambient		Container	35000-59999			Container					Ambient	e-methanol (point source)	Solid oxide electrolyser cells (SOEC)	hydro		blue fuel
		Other		e-methanol (direct air capture)			Gas Carrier	60000-99999									e-methanol (direct air capture)		Other		
				e-diesel (point source)			Tanker	100000-199999									e-diesel (point source)				
				e-diesel (direct air capture)			,	200000+									e-diesel (direct air capture)				
				e-ammonia			Cruise										e-ammonia			_	
				Blue ammonia			RoRo/ Car carrier				──						Blue ammonia				
				FAME (very low availability)			Tug				 						FAME (very low availability)				
				Bio-methane			Offshore				 						Bio-methane				+
				Bio-methanol Bio-oil (HtL) (Low TRL, not existing in 2024)			Other										Bio-methanol Bio-oil (HtL) (Low TRL, not existing in 2024)				-
				Bio-oil (pyrolis) (Low TRL, not existing in 2024)													Bio-oil (pyrolis) (Low TRL, not existing in 2024)				

The Scoping Drawing Questionnaire is to be filled out for the end state, but can also be filled out for

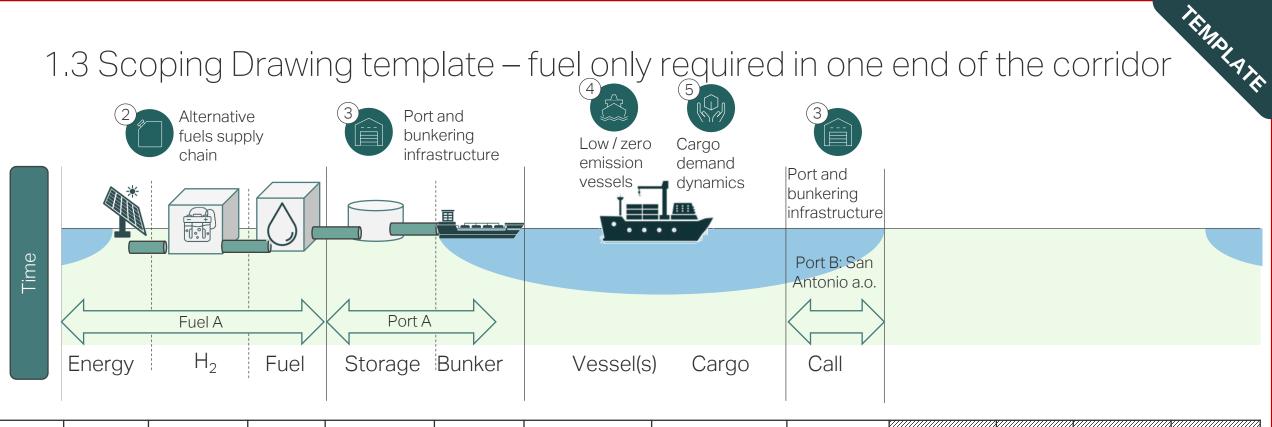
I FIND FIN


Internal

1.3 Scoping Drawing Questionnaire

Г	ime:	202	28		Ι.	out for th	ping Draw ne end sta n the deve	te, but ca	an also	be fille	d out f				Th	-	y relevant if rou tank hold i.e. 'f				
		l	Fuel A: e-amm	onia		1ejillones Bunkering		Vesse	l			Cargo		Port B: Naoshim		Naoshima a.o. Bunkering		Fuel B: e-ammo	nia		
			Fuel arr	ount A: 70.000 mt			Nu	mber of ves	ssels: 10					a a.o.			Fuel Amou	nt B: 70.000 mt			
Fuel Group	Renewable Area	Renewable Type	Electrolysis type	Fuel Type & Feedstock	Storage type	Bunkering	Vessel Segment	Vessel size (Gross Tonnage)	Vessel size (Cargo Tonnage)	Vessel Engine	Cargo Group	Cargo Type	Cargo	Calling / Bunkering	Bunkering	Storage type	Fuel Type & Feedstock	Electrolysis type	Renewable Type	Renewable Area	Fuel Group
e-fuel	Onshore	solar	tbd	e-ammonia	Pressurized	Jetty	Bulk Carrier	35.000 gt		ICE dual fuel e.g. MAN B&W 6S50ME	Bulk	Ore	Copper Concentra te	Bunkering	?	?	e-ammonia	tbd	?	?	e-fuel
e-fuel	Onshore	solar	tbd	e-ammonia	Pressurized	Barge	Bulk Carrier	35.000 gt	55.000 dwt	ICE dual fuel e.g. MAN B&W 6S50ME	Bulk	Ore	Copper Concentra te	Bunkering	?	?	e-ammonia	tbd	?	?	e-fuel

EXPANDIN In



Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Bunker	Storage	Fuel	Electrolysis	Energy
Type/ Area												
I: Size/ amount												
II: Size/ amount												
III: Connec	ctors WS	2 WS	2 WS	S2/3 WS	3 W	/S 3 / 4	WSS	3/4 W	/S 3 WS 2	2/3 V	WS 2 W	/S 2
	\sim											

Page 32

Internal

+

Electrolysis Call Area Energy Fuel Storage Bunker Vessel Cargo Type/ Area I: Size/ amount II: Size/ amount III: Connectors WS 2 WS 2 **WS 3** WS 3/4

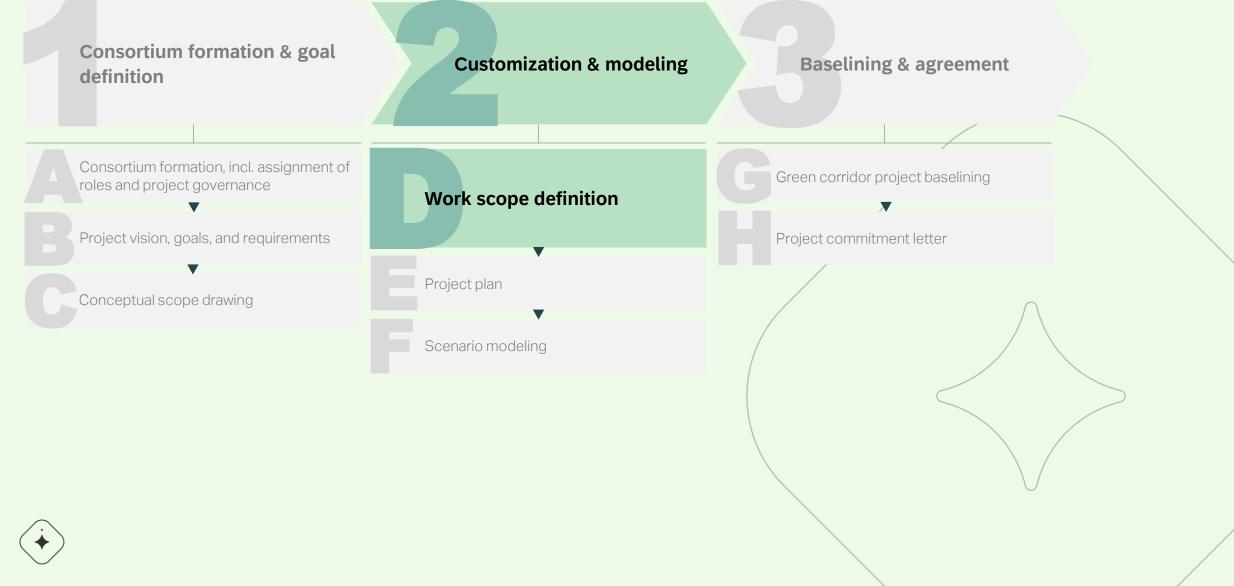
 $\langle \bullet \rangle$

Page 33

1	,3 Sc(oping D)rawir	ng temp	plate	(4)	5					EXAMPLE
	24	Alternative fuels supp chain		bun	t and kering astructure	Low / zero emission	Cargo demand	bu	ort and unkering frastructure	2	Alternativ fuels sup chain	/e
Time: 2028			*			vessels	dynamics					
Tin	FL	uel A: E-ammor	nia	Port A: Meji	llones			Port B: Na	oshima a.o.	F	uel B: E-ammo	nia
	Energy	H ₂	Fuel	Storage	Bunker	Vessel(s)	Cargo	Bunker	Storage	Fuel	H ₂	Energy
Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Bunker	Storage	Fuel	Electrolysis	Energy
Type/	Onshore	TBD	E-	Pressurized	Jetty	Bulk carrier 55.000	Copper	?	?	e-	?	?

1.3 Scoping Drawing template

(🔶)


Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Bunker	Storage	Fuel	Electrolysis	Energy
Type/ Area	Onshore Solar	TBD	E- ammonia	Pressurized	Jetty	Bulk carrier 55.000 dwt	Copper concentrate	?	?	e- ammonia	?	?
l: Size/ amount	630 ha / 420 MWac	28.000 mt		70.000 mt		10			70.000 mt		28.000 mt	
ll: Size/ amount												
III: Connec	ctors WS 2	2 WS	2 WS	62/3 WS	3 WS	53/4	WSB	3/4 W	/S 3 WS 2	./3 W	/S 2 WS	52
<i>(</i> .												

	1.3 Scoping Drawi	ng template	(4) 5		Etampik
	Alternative fuels supply chain	Port and bunkering infrastructure	Low / zero emission vessels dynamics	Port and bunkering infrastructure	
Time: 2030	Fuel A: E-ammonia	Port A: Mejillones		Port B: San Antonio a.o.	
	Energy H ₂ Fuel	Storage Bunker	Vessel(s) Cargo	Call	

Area	Energy	Electrolysis	Fuel	Storage	Bunker	Vessel	Cargo	Call	Storage Fuel Electrolysis Energy
Type/ Area	Onshore Solar	TBD	E- ammonia	Pressurized	Barge	Chemical tanker 25.000 dwt	Sulfuric Acid	-	e- ammonia
l: Size/ amount	47 ha / 32 Mwac	2.100 mt		10.000 mt		2	1.000.000 mt		70.000 mt 28.000 mt
II: Size/ amount									
III: Connec	ctors WS 2	2 WS 2	2 WS	62/3 WS:	3 WS 3 /	/ 4	WS 3		

1.3 Scoping Drawing template

Page 35

2D. Work scope definition

Purpose

- Point of reference and guide during **Feasibility Study.**
- Develop Work Scope Definition by **customizing** the Feasibility Study Methodology based on previously defined vision, goals, and requirements.
- Create transparency and alignment around **expectations in the Feasibility Study** using the Feasibility Matrix (see page 42).

Key questions

- Which activities and analyses are **relevant** for the Feasibility Study?
- What does the **resource requirement/timeline** of the Feasibility Study
 look like?

- Importance
- The Standard Methodology is intended to be used by the project team as a guide and can be **adjusted when and where necessary**.
- The project team can complement the Methodology with new project-specific activities/ analyses if needed.
- Not every activity listed in the Methodology may be applicable or necessary for every project. But all main activities should be covered.
- The Work Scope Definition **outlines all activities and analyses required** in the Feasibility Study to achieve the desired goals and outcomes. Thus, the definition, together with the project plan, serves as a guide for the workstreams during the Feasibility Study.

2D. Work scope definition

Methodology-steps	Inputs
A Provide an overview of the project's desired outcomes and key data as a common point of reference in the Feasibility matrix . Use Conceptual Scope Drawing as guidance	 Project vision, goals, and requirements Workstream Lead assessment of project requirements
B Generate Work Scope Definition by customizing Methodology (Work Scope Definition replaces Standard Methodology as reference/ guide for the project after this step)	 Project vision, goals, and requirements Input from Workstream Leads
C Create work packages in accordance with Work Scope Definition	 Work Scope Definition [Methodology 2.D] Feasibility Study project plan guideline [Methodology 2.E]

Project		Blueprint customization & Work Scope Definition Elements of the Blueprint Newly added analyses	3
vision, goals, _ and	•	Methodology:	
requirement s serve as		Additional Studies:]
input		Work Scope Definition:]

3

The Work Scope Definition is generated based on the customized Methodology

A. Use the Feasibility Methodology as reference and customize it where and if necessary

B. Generate Work Scope Definition

Based on the standard Feasibility Study Methodology and the previously defined project vision and goals, Workstream Leads identify **which elements are required** for their workstream in the Workstream Overview sheets (*Excel template available*)

Workstream Leads also have the option to **add additional analyses** if and where necessary

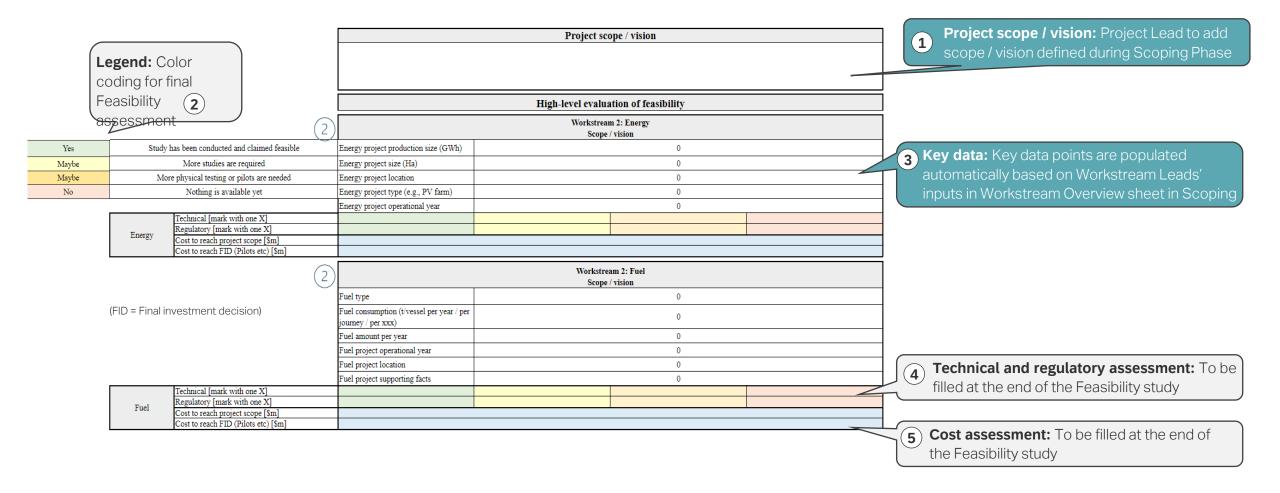
Workstream Leads and Project Lead align on the Work Scope Definition – **Project Lead to point out potential gaps** between desired outcomes and the customized Methodology

Workstream Leads to estimate the **manhour requirements** to handle the identified tasks

Project Lead to consolidate inputs across workstreams into a final Work Scope Definition. From this point on, the Work Scope Definition replaces the Methodology as reference/ guideline for the project

Workstream Lead to **create work packages** for the workstream based on the Work Scope Definition

A. Each Workstream Lead to provide key information and customize the Methodology for their respective workstreams (1/2)

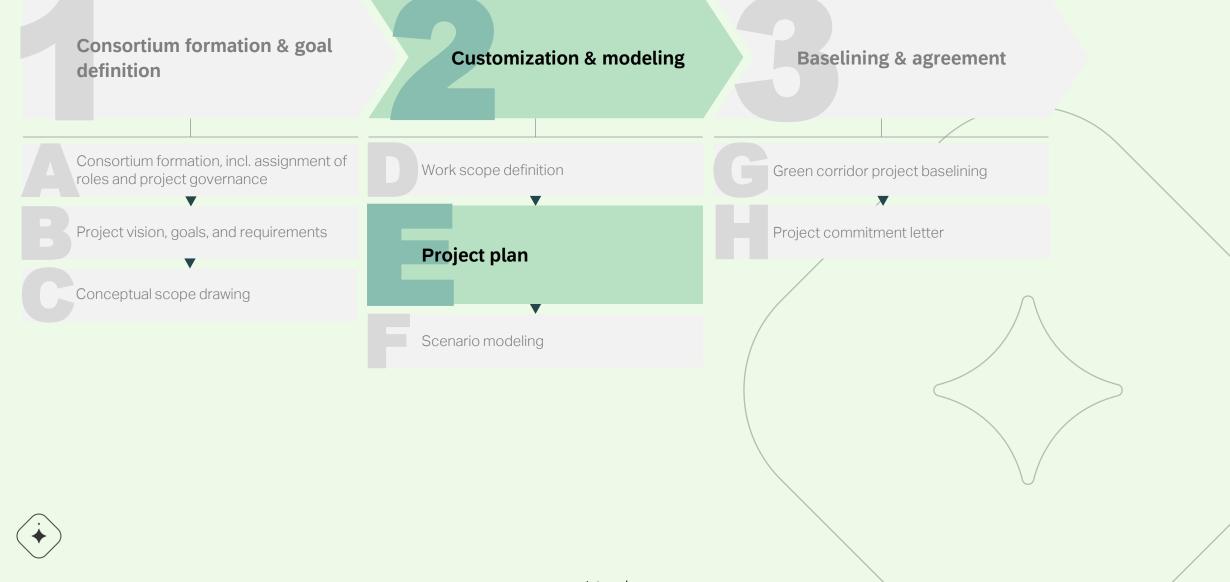

A	В	С	D	E	F	G	
1	Workstream Descrip	tion					
2 Name of the Workstream					Tod	ay´s Date	
3	Energy & fuel						
5 Project Name					Plar	ned Start	
6							
8 Workstream Lead	Workstream Support				Plar	ned End	
9							Overview:
11							Eill in high lovel workstream description incl
12							Fill in high-level workstream description, incl.
13 Significant Milestones (Dates) and Required Deliverab	les						\sim milestones and key deliverables, desired results
14							and success factors / risks
16 Requested Result / Solution (incl. Completion Criteria							
17							
18 19 Critical Success Factors / Risks							
20							Comment:
							(2) Document with comments on how the standard task
24							from the Methodology applies to the specific corrido
21 22 Detailed Activity Descriptions (Incl. All Involved / Partie	cipating Resources / Departments)						
Blueprint	······································		Importanc	e		Resources	(3) Importance:
23 Elements	Methodology Steps	Comment	High	Medium	Low (Not	Required Hours / weeks	
24					included in		
2.1 Estimate fuel demand for the specific green corridor	2.1A Estimate energy demand for the specific corridor based on expected evolution of trade						Resources:
2.1 Estimate fuel demand for the specific green corridor	2.1B Calculate alternative fuel demand for the						4 Indicate the expected manhour requirement to
							perform the task . Ensure time for QC / review
$\mathbf{\nabla}$		(2)		(3)		(4)	Page 40

A. Each Workstream Lead to provide key information and customize the Methodology for their respective workstreams (2/2)

2.5 Additional activities (optional) 41 42 43 44 Interfaces and Relations to other Work Packages 45 45 46 47 Data Input Required 48 Energy	2.5A 2.5B 2.5C	• 5 Methodology customization (2/2): Add additional rows in the spreadsheet, if you would like to add additional analyses to the Methodology / Feasibility assessment, and identify interdependencies between other work packages / workstreams
49 Energy project production 50 Energy project size (Ha) 51 Energy project location 52 Energy project type (e.g., PV solar,) 53 Energy project operational 54 Fuel 55 Fuel type 56 Fuel consumption (twessel 57 Fuel amount per year 58 Fuel project location 60 Fuel project location 60 Fuel project supporting facts 61 Attachment (Further Information) 62 63 64 Other		6 Key data points: Add key data points for the respective workstream and include attachments if relevant. <i>The currently displayed data points are exemplary</i> <i>and can be customized as per your needs</i> <i>(Consider which data points would be relevant to</i> <i>know for your project partners when choosing data</i> <i>points to display)</i>
65 66 67 Signature Workstream Lead 68 69 70 Signature Project Lead 71 72		• 7 Comments and signatures: Add comments if necessary and, after review and alignment with the Project Lead, sign the document

A. The Feasibility matrix provides an overview of the project's key data and desired outcomes

Action required in Scoping


B. The input from the Workstream Leads is consolidated into the Work Scope Definition

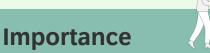
2	A	B C	D	E	F	G	Н
	1	Work Scope De	efinition				
1	Durain at Name		Jiiiidon			Ted	aula Data
2 3	Project Name					100	ay's Date
э 4	1						
5	Workstream Lead	Workstream Support				Plan	ned Start
6							
7	1					Plar	nned End
8	1						
9	Work Scope Definition						
	Workstream 2 activities: Energy & f	uel			Import	tance	Resources
0							Required
1	Key questions	Workstream analyses	Comment	High	h	Medium	Hours /
2							
3							
4							
15							
16 17							
18							
	Workstream 3 activities: Port and be	unkering infrastructure			Import	tance	Resources
19							Required
20	Key questions	Workstream analyses	Comment	High	h I	Medium	Hours /
21							
22							
23							
24							
25							
26							
27					lan a		Deserves
28					Import		Resources Required
29		Workstream analyses	Comment	High	h	Medium	Hours /
30							
81	1						

(**1**) Overview: Project Lead enters general introductory information

2 Work scope definition: Project Lead compiles Work Scope Definition based on input from Workstream Leads (*The Excel sheet automatically draws activities directly from the Workstream Description sheets*)

2E. Project plan

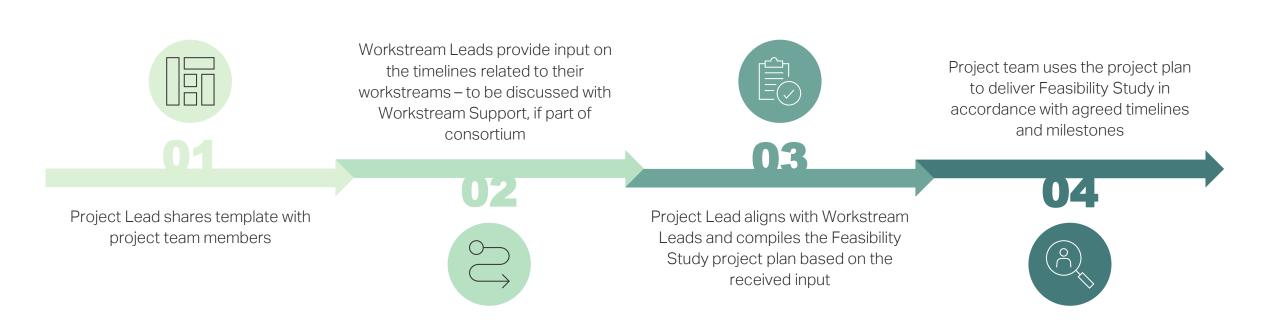
Purpose



- Provide a clear and transparent overview of workstream activities, meeting cadence, key deliverables and deadlines in the Feasibility Study.
- Allocate resources effectively to complete the project.
- **Reference point** for project team to hold each other accountable against the agreed timeline during the Feasibility Study.

Key questions

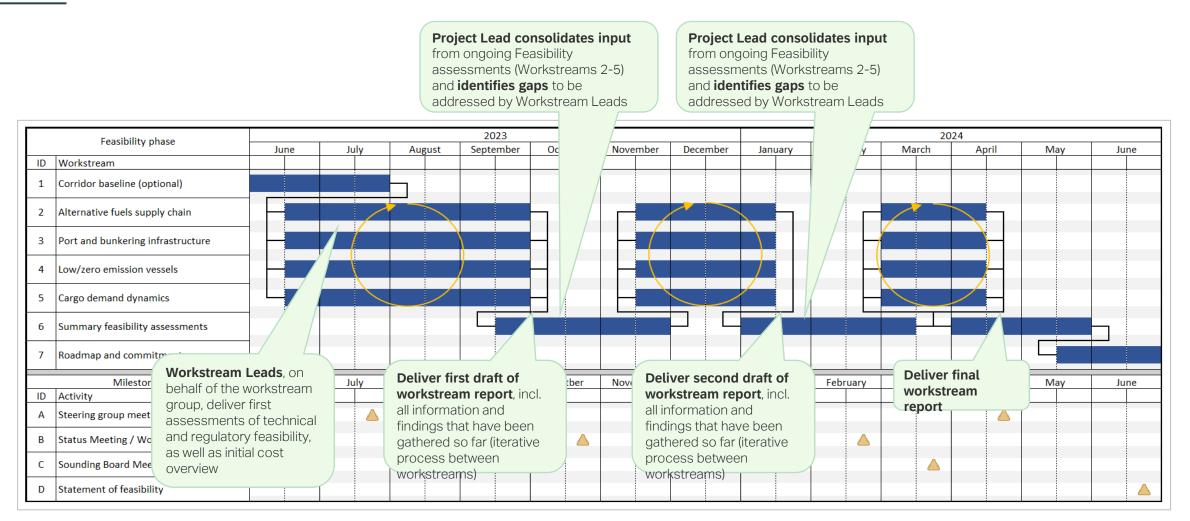
- How much **time** will it take to carry out the key activities under each workstream?
- When are **resources** from the individual project teams **available** for carrying out the activities?
- Where/how do the activities **require input** from other workstreams?
- When will key **conference/meetings** related to the project take place?


- A **shared and clear** project plan is paramount for the efficient execution of any project.
- The green corridor projects involve **several stakeholders** who are often not familiar with working with each other and are often in different time zones. It is important that **everyone works according to the same plan**.
- The project plan gives a clear **outline of interdependencies** between the workstreams.

Methodology-steps	Inputs
A Share project plan template with project team members	 Feasibility Study Project Plan guide
B Incorporate input on timelines related to workstreams	 Work Scope Definition [Methodology 2.D] Input from Workstream Leads
C Compile final project plan based on the received input	 Outcome of the above

Project plan

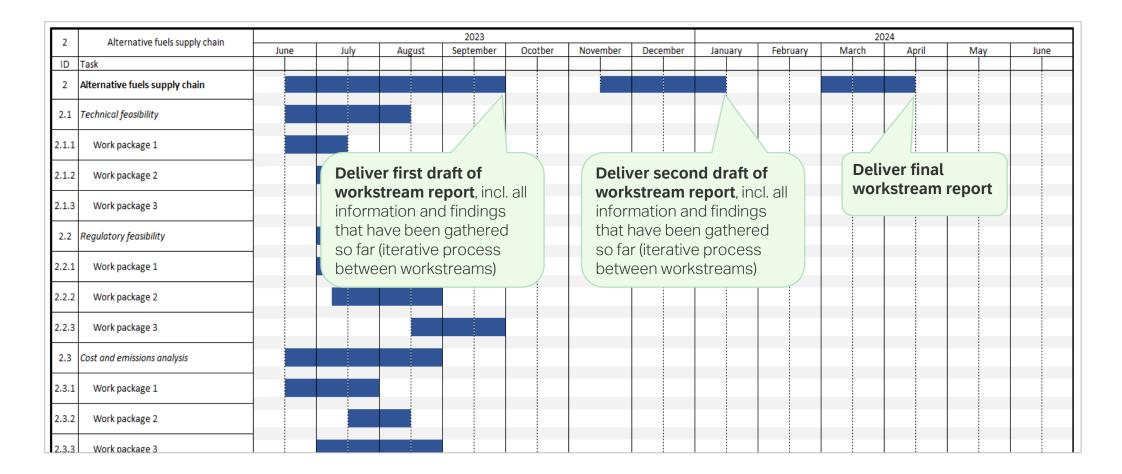
The project plan serves as a common point of reference throughout the entire project

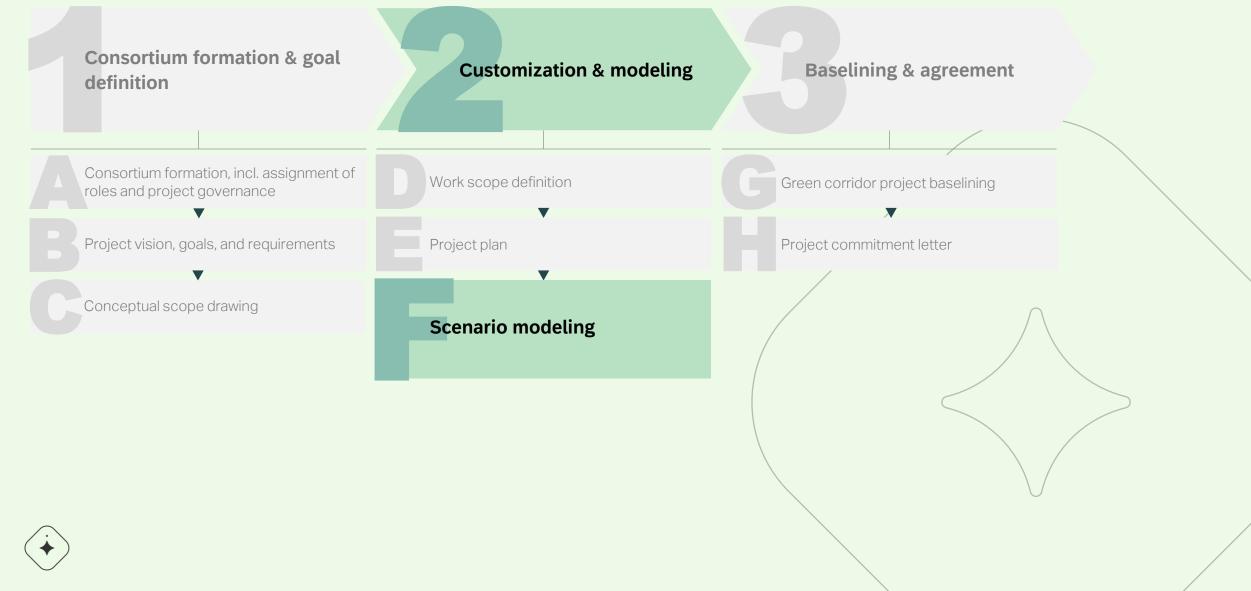


Template: Develop a Feasibility Study project plan using the template

	Feasibility Study												Ye	ar												
				ine				uly				gust			Septe				Ocotb				Nove			
ID	Workstream	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
1	Corridor baseline (optional)																									nter the duration of
-2	Alternative fuels supply chain																									workstreams here a cate with lines (use
3	Port and bunkering infrastructure																								the '	"Draw Border" tool) if
4	Low/zero emission vessels																								they	depend on each ot
5	Cargo demand dynamics																									
6	Summary of technical and regulate																									
7	Roadmap and commitments																									
	Milestones		Mo	onth			Mo	onth	•		Mo	nth			Mo	nth			Mont	:h			Mo	nth	2 10	cort kov milostonov
ID	Activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		sert key milestones
Α	Steering group meeting																						<	\leq	here	
В	Workshop																									
С	Status Meeting																									etailed tasks
																								_		rkstream Leads list
2	Alternative fuels supply chain		Mo	onth		1	Mo	onth			Mo	nth	Ye	ar	Мо	nth			Mont	h			Мо	nth		ks, their duration, and
ID	Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			20	21	22	23	-	milestones – Can
																						<			/e as input to rarching project plar	
2																									UVU.	ימרטרווו וע טרטוכטבטומו

High-level project plan for a Feasibility Study over one year


ILLUSTRATIVE



EXPANDI.

Tasks in each workstream should be clustered into actionable, but high-level work packages

| ILLUSTRATIVE

2F. Scenario modeling

Purpose

- Evaluate the high-level **CO₂ abatement potential** for the specific corridor.
- Provide an initial estimate of the incremental cost of green and incremental cost per cargo unit for the selected corridor.
- Serve as a **first point of discussion with consortium members** on the residual cost gap.

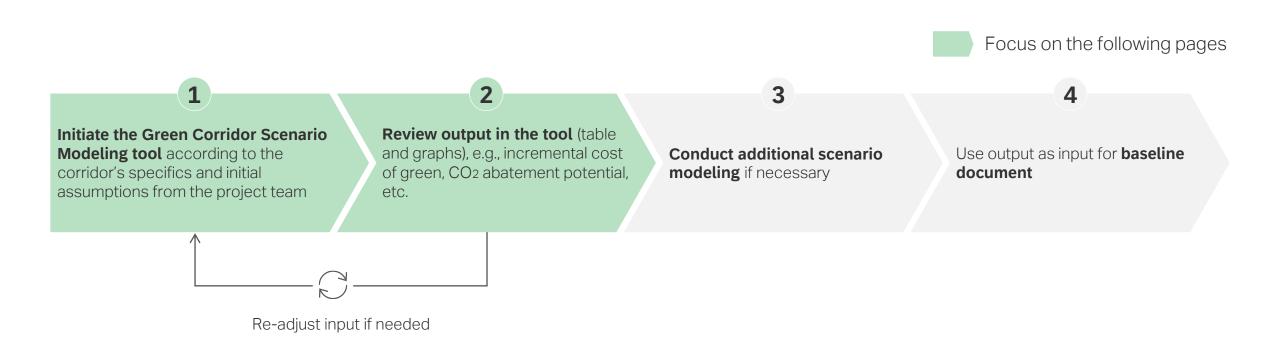
Key questions

h

- How much CO₂ emission can be abated by the specific corridors as vessels move from fossil-based fuel to the alternative fuel of choice?
- What is the total **CapEx and OpEx** for establishing the corridor:
 - o Renewable energy
 - Fuel production
 - o Port Infrastructure
 - o Vessels

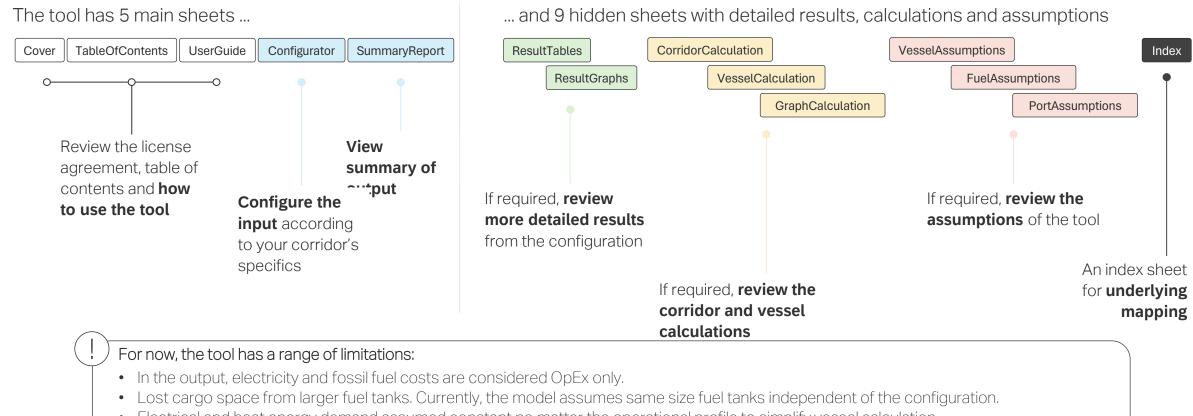
Importance

- A **good understanding** of the incremental cost, amount of abated CO₂, cost impact on cargo, and cost of abated CO₂ is important for the **communication regarding the project**.
- These initial estimates give an important indication and **allow stakeholders to understand** if the corridor is likely to be impactful in terms of CO₂ abatement, cost effectiveness, technological enabling, etc.
- Ultimately, the estimates allow the very first assessment as to whether **it makes sense to do** a Feasibility Study.


Page 52

2F. Scenario modeling

3


Methodology-steps	Inputs
A Use Green Corridor Scenario Modeling Tool according to the corridor's specifics and initial assumptions, if and where needed	 Green Corridor Cost Model Initial assumptions and input from Workstream Output from the Pre-Feasibility Study 1st Wave Assessment
B Review output in the tool, e.g., CO2 abatement potential, incremental cost of green, etc.	
C Conduct additional scenario modeling if required	 Input from Workstream Leads

The cost and scenario assessment provides preliminary insights on the incremental cost of green and CO_2 abatement potential of the green corridor

The Green Corridor Scenario Modeling Tool⁽⁵⁾ is a configurable, automated Excel tool that provides insights on costs and CO_2 abatement potential of a corridor

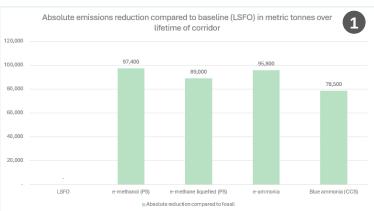
How to use the tool

- Electrical and heat energy demand assumed constant no matter the operational profile to simplify vessel calculation
- Port costs are input with very simple assumptions. Please change these when configuring a corridor if you have a better view on these values.

⁵⁾ Can be downloaded on www.zerocarbonshipping.com

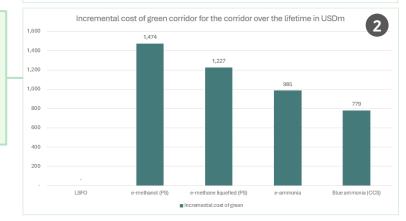
Configurator: This sheet allows users to configure the model to fit the selected green corridor's specifics

Input values


Α

Only red cells should be adjusted by the user – some of the cells have a drop-down menu that opens when clicking on the cell or pressing the 'alt' and ' \downarrow ' keys simultaneously.

Override function (optional)


The red cells in this column can be used to override the values to their left, if needed.

Fuel configuration	Unit	Option 1	Option 2	Option 3	Option
Main fuel	-	e-methanol (PS)	e-methane liquefied (PS)	e-ammonia	Blue ammonia
Main fuel type	-	Methanol	Methane	Ammonia	Ammoni
Vessel types for fuel	-	DF Methanol	DF Methane	DF Ammonia	DF Ammo
Pilot fuel	-	LSFO	LSFO	LSFO	LSFO
Corridor configuration	Unit	Value	Override		Absolute em
Bunker region	-	Europe			Absolute em
Year	-	2025			
Vessel segment	-	Container		120,000	
Vessel size	-	8000 TEU			
Number of vessels	-	1		100.000	
Lifetime of corridor	Years	25		100,000	
Average vessel speed	Knots	18			
Cargo per vessel	TEU	8,000		80,000	
Cargo value	USD/TEU	50,000			
Distance for one roundtrip	Nautical miles	8,000		60,000	
Days at sea	Days	240		00,000	
Number of roundtrips per year	-	13.0			
Cargo utilization	%	65%		40,000 -	
			-		
Regulatory configuration	Unit	Value		20,000	
Corridor carbon price	USD/tCO2eq	-			
Willingness to pay from cargo owners/custo	omers `% of cargo value				

Baseline LSFO

MF Diesel

Output

В

The graphs provide the following output:

- 1. Incremental cost of green by alternative fuel type, split into transport and cargo
- 2. Total cost by alternative fuel type, split into vessel, port, fuel, emissions
- 3. Emissions compared to fossil-fuel baseline by alternative fuel type

A. Input values: Fuel configuration – The user can select different fuel types to be compared to the fossil-fuel baseline

Fuel configuration

Fuel configuration	Unit	Option 1	Option 2	Option 3	Option 4	Baseline
Main fuel	-	e-methanol (PS)	e-methane liquefied (PS)	e-ammonia	Blue ammonia (CCS)	LSFO
Main fuel type	-	Methanol	Methane	Ammonia	Ammonia	Diesel
Vessel types for fuel	-	DF Methanol	DF Methane	DF Ammonia	DF Ammonia	MF Diesel
Pilot fuel	-	LSFO	LSFO	LSFO	LSFO	LSFO
Corridor configuration	Unit	Value	Override			
Bunker region	-	Europe				
(ear	-	2025				
/essel segment	-	Container			Options 1-4 can k	ne customize
/essel size	-	8000 TEU			-	
Number of vessels	-	1			by the user by adj	
Lifetime of corridor	Years	25			cells. The white ce	ells are
Average vessel speed	Knots	18			automatically filled	based on inp
Cargo per vessel	TEU	8,000			in the main fuel rov	
Cargo value	USD/TEU	50,000				/v.
Distance for one roundtrip	Nautical miles	8,000			The Baseline in co	olumn H incluc
Days at sea	Days	240				
Number of roundtrips per year	-	13.0			the standard foss	at tuel as a
Cargo utilization	%	65%			comparison.	
					Soo the "EuclAcc	umptions" of

Regulatory configuration	Unit	Value
Corridor carbon price	USD/tCO2eq	-
Willingness to pay from cargo owners/customers	% of cargo value	-

See the **"FuelAssumptions" sheet** for fuel data.

A. Input values: Fuel configuration – The model is backed up by a granular and robust data set including multiple bunker fuels

Granularity of data – selected elements (exemplary)

Bunker fuels

- e-hydrogen (liquefied) •-
- e-hydrogen (compressed)
- e-ammonia
- e-methanol (DAC)
- e-methanol (PS)
- e-methane liquefied (DAC)
- e-methane liquefied (PS)
- e-diesel (DAC)
- e-diesel (PS)
- Blue ammonia (CCS)
- Bio-methanol
- Bio-methane (liquefied)
- Bio-oil (HTL)
- Bio-oil (Pyrolysis)
- LNG
- LSFO

 Yearly data points for e-hydrogen (liquefied) for the following parameters:
CapEx (Global)
• OpEx (Africa)
OpEx (Americas)
• OpEx (Asia)
• OpEx (Europe)
OpEx (Middle East)
 Total emissions – WTT – GWP100 (Global)
 Total emissions – TTW – GWP100 (Global)
 Total emissions – WTW – GWP100 (Global)

A. Input values: Corridor configuration – Users can adjust multiple parameters to ensure the data model matches the specific corridor's characteristics

Corridor configuration

Fuel configuration	Unit	Option 1	Option 2	Option 3	Option 4	Baseline
Main fuel	-	e-methanol (PS)	e-methane liquefied (PS)	e-ammonia	Blue ammonia (CCS)	
Main fuel type	-	Methanol	Methane	Ammonia	Ammonia	
Vessel types for fuel	_	DF Methanol	DF Methane	DF Ammonia	DF Ammonia	MF Diesel
Pilot fuel	-	LSFO	LSFO	LSFO	LSFO	

Corridor configuration	Unit	Value	Override
Bunker region	-	Europe	
Year	-	2025	
Vessel segment	-	Container	
Vessel size	-	8000 TEU	
Number of vessels	-	1	
Lifetime of corridor	Years	25	
Average vessel speed	Knots	18	
Cargo per vessel	TEU	8,000	
Cargo value	USD/TEU	50,000	
Distance for one roundtrip	Nautical miles	8,000	
Days at sea	Days	240	
Number of roundtrips per year	-	13.0	
Cargo utilization	%	65%	

Regulatory configuration	Unit	Value
Corridor carbon price	USD/tCO2eq	-
Willingness to pay from cargo owners/customers	% of cargo value	-

Customize the corridor configuration by adjusting the red cells.

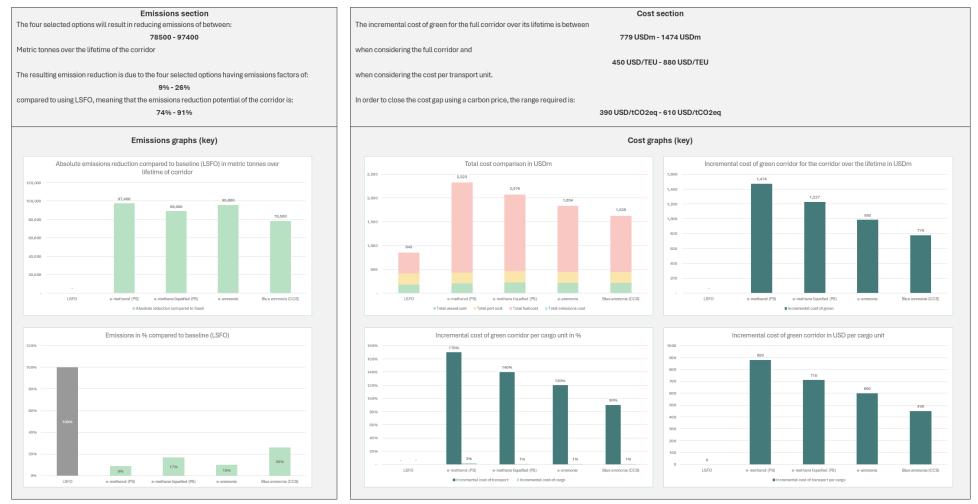
The white cells are automatically filled based on input on the vessel segment and size. They are based on assumptions from the underlying data model but can be adjusted using the override function.

You can also test the impact of adding a **carbon price on the corridor** or adding a **willingness-topay** from the cargo owners/customers.

A. Input values: Corridor configuration – The model is backed up by a granular and robust data set including multiple vessel types

Granularity of data – selected elements (exemplary)

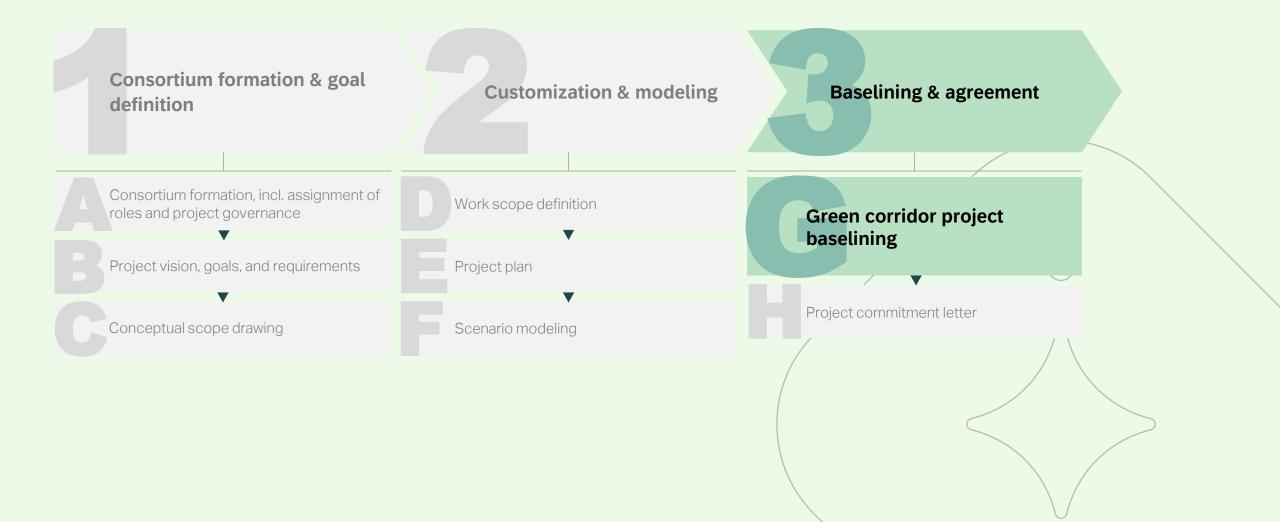
Vessels


- Container (3500 TEU) -
- Container (8000 TEU)
- Container (15000 TEU)
- Bulk carrier (Handy)
- Bulk carrier (Panamax)
- Bulk carrier (Capesize)
- Tanker (35k dwt)
- Tanker (100k dwt)
- Tanker (300k dwt)
- RoRo (4000 CEU)
- RoRo (7000 CEU)
- Gas Carrier
- Cruise (25k GT)
- Cruise (100k GT)
- Cruise (175k GT)
- Fast Ferry
- Ferry
- General Cargo
- Offshore
- Tug

Yearly data points for Container vessels (3500 TEU) for the following parameters:
Nominal capacity
 Days at sea
Average speed
 Main engine thermal efficiency - MF Diesel
 Main engine thermal efficiency - DF Methane
 Main engine thermal efficiency - DF Methanol
 Main engine thermal efficiency - DF Ammonia
Main engine pilot fuel share - MF Diesel
 Main engine pilot fuel share - DF Methane
Main engine pilot fuel share - DF Methanol
 Main engine pilot fuel share - DF Ammonia

B. Output: The summary report provides a summarized output from the corridor calculations including two main sections on emissions and cost

Summary report


C. Goal seeking: Examine simple ways to close the cost gap through a carbon price or willingness-to-pay

Goal seeking

Corridor configuration	Unit		Va	alue	Over	ride
Bunker region			Europe			
Year	-		20	025		
Vessel segment	-		Con	tainer		
Vessel size	-		8000 TEU			
Number of vessels	-		1			
Lifetime of corridor	Years		25			
Average vessel speed	Knots	3	1	18		
Cargo per vessel	TEU		8,	000		
Cargo value	USD/	TEU	50,	,000		
Distance for one roundtrip	Nauti	cal miles	8,	000		
Days at sea	Days		240			
Number of roundtrips per year			13.0			
Cargo utilization			65%			
Regulatory configuration	Unit		Va	alue		
Corridor carbon price	USD/tCO2eq			-		
Willingness to pay from cargo o	wners/customers 🔪 of e	cargo value		-		
Close cost-gap to	Close cost-gap to	Close cos	t_gan to	Close cos	t-gan to	
Option 1 by adding a	Option 2 by adding a	Option 3 by		Option 4 by		
carbon price	carbon price	carbon	•	carbon		
carbon price	carbon price	Carbon	price	Carbon	price	Reset regulator
						configuration
Close cost-gap to	Close cost-gap to	Close cos	t-gap to	Close cos	st-gap to	comparation
Option 1 by adding a	Option 2 by adding a	Option 3 by		Option 4 by		
willingness-to-pay	willingness-to-pay	willingnes		willingnes		

Understand how the cost gap between Alternative fuel options 1-4 and the Baseline can be closed by using the green buttons to (1) add a **carbon price** or (2) add a **willingness-to-pay** for each of the 4 options selected in the fuel configuration.

The value cells in the two red cells in the regulatory configuration as well as the graphical output will be adjusted automatically based on the selected green buttons.

3G. Green corridor project baselining

Purpose

- Outline the **goals and objectives** for the Feasibility Study.
- The **technical session** provides context and background information in relation to fuel, ports, vessel, cargo dynamics, etc.
- The scenarios modeling provides an insight into, and discussion hereof, of the CO₂ abatement potential and incremental cost
- The document is an internal project document, which ensures an **aligned partnership in advance of starting** the Feasibility and signing the Project Commitment Letter.
- The document serves, in an updated version, also as **Chapter 1** in the Feasibility Study

Key questions

- What are the agreed **project technical terms: project members, goal, objective, governance, etc?**
- What are the **initial positions** on choice of fuel(s), port(s), vessel segment, for the Feasibility Study?

- Importance
- A common baseline document for all project members ensures an efficient and swift process for signing the Project Commitment Letter, as the baseline document outlines all relevant parts of the project.
- The document will **not be publicly available** and does not require a thorough review. It only serves as a common reference point for starting the project.

3G. Green corridor project baselining

Methodology-steps

Α	Describe the project's	vision, goals, and requirements in detail to
	identify the desired ta	get state.

B Identify **sources of alternative fuel** best suited to meet future demand, considering import options, announced projects, etc.

C Assess the **current and expected storage and bunkering infrastructure** for the corridor (based on geography, fuels, segment, volume, etc.)

D Understand the administrative scheme in place within the green corridor

E Specify the **technical characteristics of vessels** in the corridor (incl. types, sizes, ages, fuel consumption, voyage characteristics)

E Describe the high-level trade flows, incl. **type** (cargo types), **nature** (e.g., origin-destination), **ownership**, etc.

Estimate the CO₂ abatement potential and cost gap to be closed. Define the target state and compare with a fossil-based 'current state'

Inputs

Feasibility Scoping [Methodology 1A]

What are the **potential alternative fuels and sources** best suited for the corridor?

Which are the key **ports** and what are their respective **bunkering & storage infrastructure**?

Which tax and tax exemptions are applicable? What are the laws and who are the relevant authorities for handling/bunkering ?

What are the key **technical characteristics of the vessels** expected in the green corridor?

What is the nature of the **trade flows** and the **end-customer** characteristics related to the corridor?

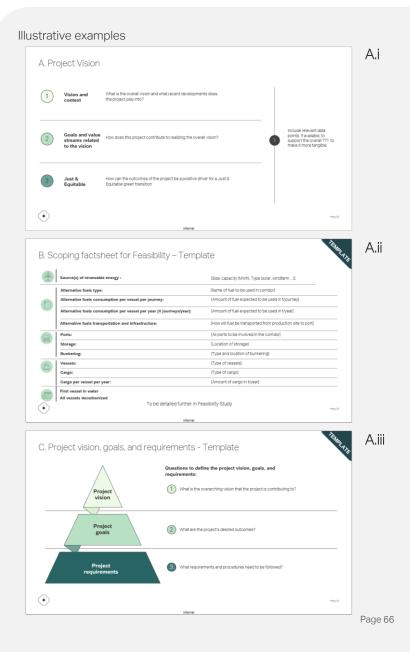
Feasibility Scoping [Methodology 2F]

G

Summarize **key insights** into a **corridor project baseline** that can serve as the starting point for the Feasibility assessment (max 10 pages)

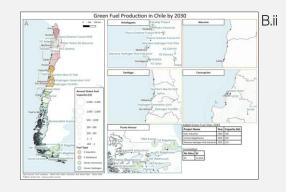
A. Describe the vision, goals, and requirements of the Feasibility Study

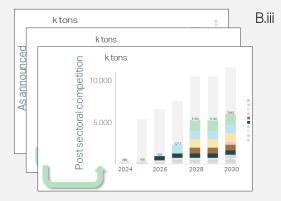
Methodology-steps


a foundational narrative

- Inputs
- Describe the desired **target state** in Conversations with key project stakeholders
 - Output from Pre-Feasibility Study
- Create a Scoping factsheet with key data on fuel, port, bunkering, and storage, as well as regulatory factors, and update it as more insight is acquired
- Conversations with key project stakeholders

- Describe the project's **vision**, iii goals, and requirements as precisely as possible
- Combination of the above

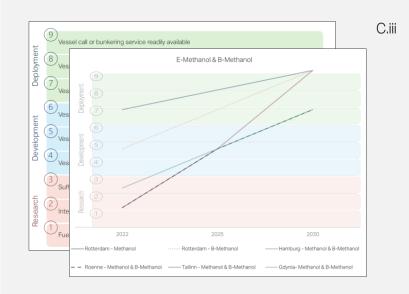

Refer to project vision, goals, requirements, and narrative guideline



B. Identify sources of alternative fuel best suited to meet future demand

Methodol	ogy–steps	In	outs
high-lev	mand of decided alternative fuel(s): Create el estimate for future demand for ive fuel(s) over time for the specific corridor	_	Expected fuel consumption for vessels operating on specific corridor Distance of corridor Days at sea / days at port
alternat	overview of existing and planned ive fuel production sites for relevant fuel prridor/import to corridor = intra-regional) w by volume, type, capacity, operator, and	_	Current and expected projects by company, production levels and maturity level for agreed fuel type(s) Location of expected production sites and import routes to corridor
iii If intra-r provide	h workstream lead if already defined egional fuel is not an option or uncertain, insight into timing, and assess capacity and extra-regional fuel	_	Literature / announcement screening Transportation cost
for the s	e the cost of the alternative fuel to be used pecific corridor on a high level I Cost Calculator if no known cost is available	_	Estimates from literature Input from early consortium partners
fuel to b	potential sourcing and type of alternative be used in the green corridor th workstream lead if already defined	_	Combination of above

Illustrative examples



C. Assess the current and expected storage and bunkering infrastructure along the corridor

Methodology – steps	Inputs
i Describe port ownership and operatorship structures relevant for the specific green corridor. Describe geographical conditions for relevant ports (weather, depth, etc.) as well as limitations (to expansion or fuel handling)	 Ownership structure (e.g., state-owned, private) Port operators Existing agreements between operator/owner Geography of ports Description of possible limitations to expansion (e.g., protected land)
ii Identify current storage, loading/unloading & bunkering options for ports along the specific corridor	 Bunkering operators Assessment of fuels and chemical handled in the port Description of onshore and marine bunkering/storage infrastructure by fuel type (fuel oil, bio-oil, LNG) Chemical types handled (especially NH₃, CH₃OH, CO₂, H₂) Description of current and expected capacity
(iii) Create overview of quantitative / qualitative port readiness level assessment along with planned future investments in facilities and other future plans for relevant ports along the specific corridor	 Quantitative port readiness level assessment based on WPCAP guideline and/or qualitative port assessment to determine port readiness Description of strategies and any planned additions to infrastructure
iv Estimate high-level CapEx and OpEx for the selected ports to establish and operate the infrastructure (storage & bunkering) for the alternative fuel	 Input from literature and/or announcement Possibly Input/QC'ed by Scoping Project members

Illustrative examples

D. Understand the administrative scheme in place within the green corridor

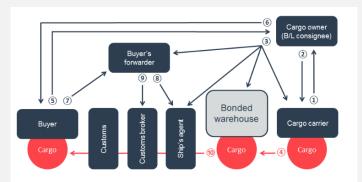
The administrative scheme within the green corridor encompasses several key aspects, including taxation/exemptions and handling/bunkering permissions.

Methodology-steps

Determine the taxation status of alternative fuels versus fossil fuels, and whether taxation applies to fuel consumption during **domestic navigation** versus international navigation (tax exempted).

Understand **handling and bunkering permissions.** This will involve inquiries into **applicable laws** and jurisdictions, identification of **authorities** responsible for overseeing the use of new fuels (such as but not limited to: port authorities, operators, coast guards, or ministries).

Find out whether land-based facilities fall under the purview of the same agencies.

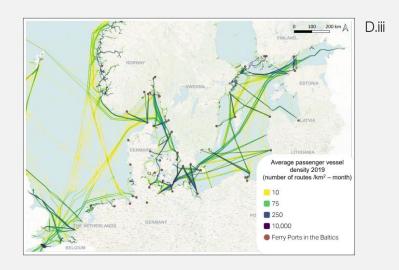

These considerations are vital for navigating the **regulatory landscape** and **ensuring compliance** within the green corridor.

1320	STATE OF SOUTH CAROLINA DEPARTMENT OF REVENUE EXEMPTION CERTIFICATE FOR SALES AND USE TAX (Single Sale Only)	ST-8 (Rev. 7/14/16) 5009
^o urchaser's Name	(Please Print)	This form is to be completed by purchaser and seller must
Signature	Signature Amount of Sale \$	maintain copy of exemption
Address		certificate. Do not send certificate to SC Department
		of Revenue.

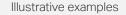
he undersigned hereby certifies that the purchases of tangible personal property made under this certificate are made in cordance with the exemption checked below, that in the event the property so purchased is used for purposes other an specified, the purchaser assumes full liability and must like a return and pay the tax due thereon.

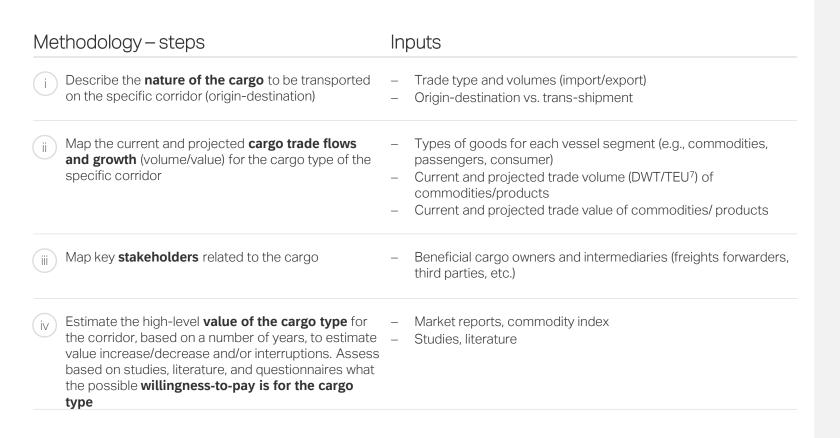
escription of tangible personal property purchased

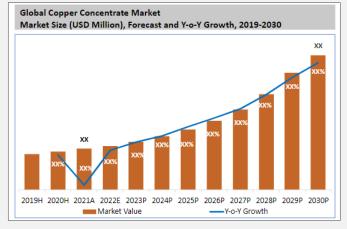
Illustrative example of exemption certificate

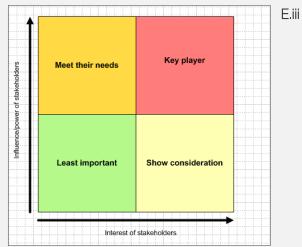


Illustrative example of trade and forfaiting flow

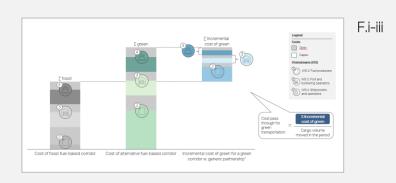

E. Specify the technical characteristics of vessels in the corridor


Methodology-steps	Inputs
i Describe current vessel routing behavior on the corridor. Estimate future changes (if any)	 Schedules, number of trips, etc.
i Create overview of owner(s) and operator(s) of vessels active on the specific corridor	– Literature/Internet search
iii Develop overview of number and type of vessels operating on the specific corridor. Estimate development scenario of specific corridor to fully decarbonize	 Number of vessels by size (e.g., handysize, capesize) Number of vessels by age (e.g., newbuild, 10+ years) Expected vessel newbuilds (order book)
iv Identify technical profile of vessels 1) currently active on specific corridor and 2) to be active on alternative fuel	 Propulsion technologies, engine systems for current and future vessels
V Estimate annual fuel consumption on green corridor based on high-level assessment of annual fuel consumption for vessels on specific corridor	 Number of ships along corridor by size Preferred fuel type Average fuel consumption by size
vi Calculate corridor emissions per vessel/cargo unit for vessels 1) currently active on specific corridor and 2) to be active on alternative fuel	 Vessel annual fuel consumption Emissions factor to convert fuel to resulting emissions
Vii Estimate high-level CapEx and OpEx for the specific number of vessels in both a fossil and alternative version	 Input from literature and/or announcement Possibly Input/QC'ed by Scoping Project members


Illustrative examples



F. Describe the high-level trade flows, including type, nature and ownership



E.i

G. Estimate the green corridor's CO_2 abatement potential and cost gap to be closed

Methodology – steps	Inputs
i Assess the total cost (CapEx + OpEx) of the specific corridor on traditional fossil fuel and on the proposed alternative fuel based on insights from each value chain element	 1.2.D, E output 1.4.G output Green Corridor Scenario Modeling tool
ii Estimate the incremental cost of green for each of the value chain elements as well as the total incremental cost of green	 1.2.D, E output 1.4.G output Green Corridor Scenario Modeling tool
iii Identify the CO₂ abatement potential and incremental cost of green per cargo unit and compare to total cargo value	 The above and 1.4 output Green Corridor Scenario Modeling tool
iv Make 'inverse calculation' to estimate 1) the needed pricing on CO ₂ to break even 2) the incremental cost per cargo unit	 Combination of above Green Corridor Scenario Modeling tool

Illustrative examples

H. Summarize key insights into a corridor baseline document

1	Description of corridor —cor
\bigcirc	Recommenda

Description of the **target state** — including **vision, goals, and requirements** for the green corridor —conceptual drawing of scope and workstream delineation

Recommendation of the **alternative fuel** to be used in the green corridor, including its required volume, if possible, its **source / feedstock** and its **production location**

 \mathcal{A}

Description of **current port, storage and bunkering infrastructure** along the green corridor, including current capacity, as well as the future **target port, storage and bunkering infrastructure**, including necessary capacity

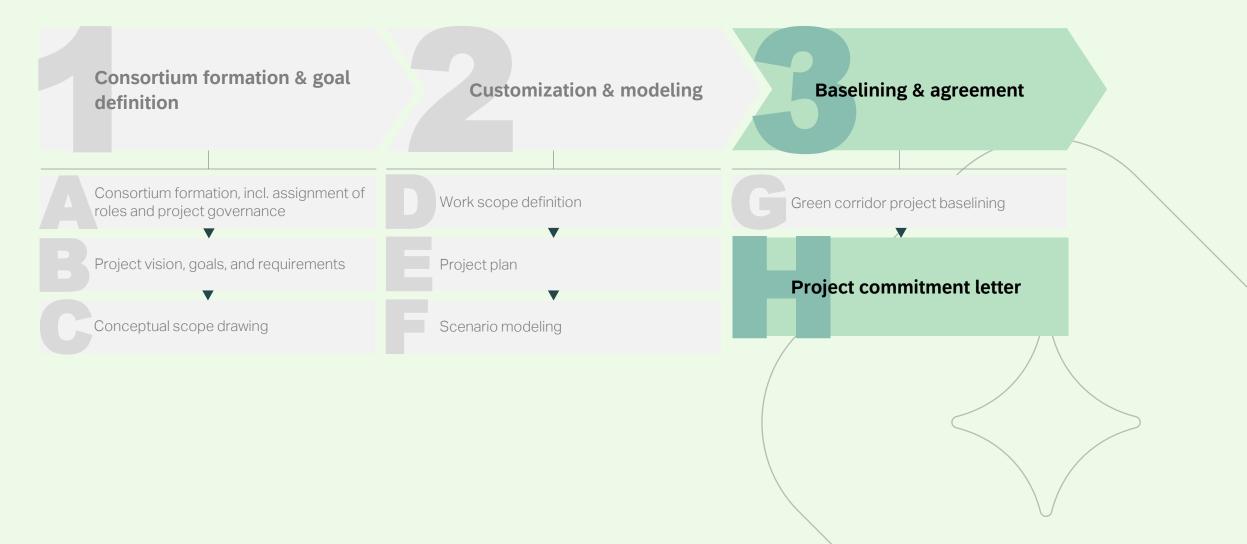
4

Overview of the administrative scheme in place within the green corridor

5

Overview of current and expected **low/zero carbon emission vessels** in the corridor, including their specific **characteristics** and **emissions**

 \bigcap


Understanding of trade flows, cargo type, volume and value, cargo owners and consumers

Potential CO_2 abatement, initial total **cost estimate** (CapEx and OpEx over 25 years) as well as an initial view on the **incremental cost of green**

Suggested structure of the chapter in the final report

- 1. Introduction and project framework, incl. project vision, goals, and requirements, an initial view on key findings and the incremental cost gap
- 2. Alternative fuels supply chain
 - A. General overview
 - B. Specific to the project
 - C. Preliminary cost assessment
- 3. Port and bunkering infrastructure
 - A. General overview
 - B. Specific to the project
 - C. Preliminary cost assessment
- 4. Overview of administrative scheme
- 5. Low/zero emission vessels
 - A. General overview
 - B. Specific to the project
 - C. Preliminary cost assessment
- 6. Cargo demand dynamics
- 7. Summary
 - A. CO₂ abatement potential
 - B. Incremental cost
 - C. Next steps

•

 $\langle \bullet \rangle$

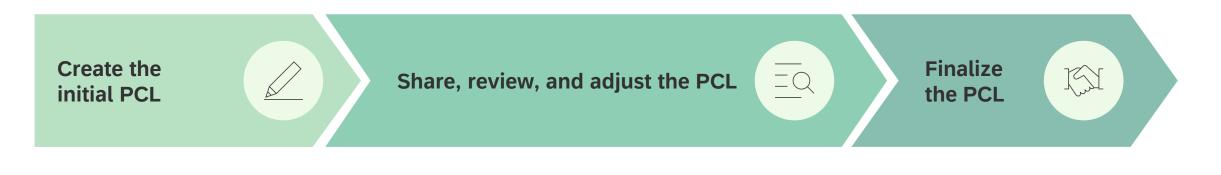
3H. Project commitment letter (PCL)

Purpose

- The PCL **outlines mutual intentions** for collaborative efforts in the Feasibility Study.
- The parties commit to carry out the Feasibility Study phase. **No financial commitment**, beyond possible minor analysis and surveys, if deemed necessary, to document feasibility.
- It does not create legally binding obligations, except for the confidentiality provisions.
- Establishes a **framework** for ongoing discussion and cooperation.
- Articulates **general principles and objectives** guiding the parties.

Key questions

- Is it **necessary** to include a PCL in the Feasibility Scoping Phase?
- What are the **general principles and objectives** articulated in the PCL?
- How does the PCL handle legally binding obligations, particularly regarding confidentiality provisions?
- What is the **prerequisite** for project team members to sign the PCL regarding the completion of other activities in the Feasibility Scoping Phase?


Importance

- The PCL is an **optional element**; it determines the **end** of the **scoping** phase.
- Could be required when **public announcements are expected**, or **mutual intention** of formalization is desired.
- Serves as a **point of reference** for guiding principles, conditions, and responsibilities.
- All **other activities** in the Feasibility Scoping Phase must be **completed** for project team members to sign the PCL.

Methodology-steps	Inputs
A Create initial version of the PCL based on the template	 Feasibility Scoping Methodology/ PCL guideline
B Review and adjust the wording with lawyers / legal teams of all project members	 Input from lawyers/ legal teams of project members
C Review and adjust the project description with project members	 Input from project team members
D Finalize and sign the PCL	- Outcome of the above

3

The Project Commitment Letter is set up by the Project Lead and reviewed by all project members

Project Lead to create initial version of the PCL

based on template

Project Lead to share initial version of the PCL with Workstream Leads

Legal teams of the Workstream Leads **review** the provisions of the PCL, while project team members of the Workstream Leads **review the project description**

The **feedback is then iterated** between the Project Lead and the Workstream Leads

Eventually, the Project Lead finalizes the PCL and sends it to project team members for their signature

The Project Commitment Letter includes two parts: (1) The terms and (2) the project description

1) Legal terms

- A list of signing parties (company details)
- A short description of each signing party
- 1. Background

.

- 2. Validity and Legal Effect
- 3. Documents
- 4. The study
- 5. Contemplated Agreement
- 6. Confidentiality
- 7. Publication
- 8. Non-exclusion
- 9. Term and Termination
- 10. Choice of Law and Dispute Resolution
- 11. Signatures

To be reviewed by legal teams of project members

2) Sch	nedule (PD) Project Des	scription
1.	Intro	duction	
2.	The	Project	
	А.	Project overview	
	В.	Project vision	
	C.	Project goals	1.1. Describe the vision, goals, and
	D.	Project requirements	requirements of the Feasibility Study
	E.	Scoping factsheet	2.2 Develop a project plan in accordance
	F.	Project timeline	with the previously defined Work Scope
	G.	Project organization	Definition
	Η.	Roles and responsibilities	1.2. Identify and engage potential project
	Ι.	Project supervision	members and align on their roles and level of involvement
	J.	Project conduct	
З.	Commitment and contribution		
4.	Finance and budget		
5.	Reporting		

To be reviewed by participating project team members

1. Legal terms – Overview of key messages (1/2)

ction in the PCL	Key content/ messages
Background	By signing this PCL, the Parties confirm their strong intentions of initiating the collaboration in order to carry out the Feasibility Study
Validity and Legal Effect	This PCL is solely an expression of the Parties' intentions and shall not constitute any legally binding obligations for the Parties, except for the confidentiality obligations
Documents	The Schedule [PD] (Project Description) is an integral part of this PCL and all references made to this PCL include a reference to the Schedule [PD] Project Description
The Project	The "Project" shall mean the project governed by this PCL as described in Schedule [PD] Project Description
Contemplated Agreement	Should the Parties, during the term of this PCL, decide to legally formalize their collaboration in the Project, the following agreement is expected to be entered into between the Parties ('Contemplated Agreement'):
	(i) Project Agreement governing the Parties' collaboration in the Project
Confidentialit y	The Parties are obliged to keep confidential any information that is exchanged between the Parties in connection with the Project and that is explicitly and clearly marked as confidential upon disclosure
	Where disclosure is required by law, prior to such disclosure the receiving Party shall consult with the disclosing Party in good faith about the terms of the receiving Party's disclosure of the disclosing Party's confidential information
	The confidentiality obligations set out in Section 6 will survive termination of this PCL for a period of 2 (two) years from termination of this PCL for a period of 2 (two) years from termination of this PCL
	Background Validity and Legal Effect Documents The Project Contemplated Agreement

1. Legal terms – Overview of key messages (2/2)

Section in the PCL Key content/ messages

7 Publication	For the purpose of this PCL, "Publication" means (i) the publication of an abstract, article, study, paper or similar in a journal or in other public domains, (ii) presentations at a conference, seminar or other public domains, and (iii) any other disclosure that is meant to inform or present a certain topic to a wider group of recipients or unidentified audience, and "Publish" and "Publishing" are to be construed as meaning the same	
	Joint publication: The Parties shall in good faith discuss a joint initial Publication of the Project results and the general principles for references to the Parties' involvement in this Project	
	Required Publication: Subject to the confidentiality obligations contained herein, the requirement for publicity shall be honored in good faith by all project participants.	
8 Non-exclusive	This PCL is non-exclusive and nothing in this PCL shall prevent or restrict a Party from entering into identical or similar arrangements, letters of intent and/or agreements with any other persons or entities	
9 Term and Termination	Start date: When all parties have signed the PCL, counting from the date of the Party signing last in time ('Effective Date')	
	End date:	
	If the Parties enter into the contemplated Agreement or a similar agreement governing the Project:	
	PCL automatically terminates when the Project is completed	
	PCL automatically terminates on a fixed 'Expiration Date'	
	 If the contemplated Agreement is not entered into or the Project is not completed 30 calendar days prior to the Expiration Date, and upon notice from a Party to the other Parties, the Parties agree to enter into good faith discussions for an extension of the term of this PCL 	
10 Choice of Law and	TBD by the Parties, including to what extent this section should be made legally binding	

Dispute Resolution

Page 80

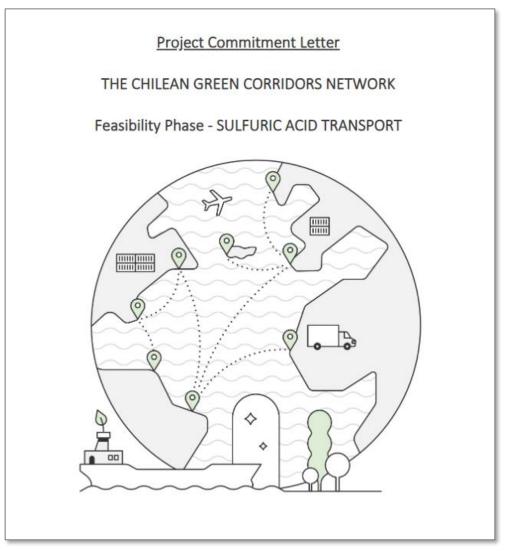
2. Schedule (PD) Project Description – Overview of key messages

Section in the PCL	Key content/ messages	
1 Introduction	This Schedule [PD] sets out the main parts of the Project details. Including the Project Title	
2 The Project	 A. Project overview B. Project vision C. Project goals D. Project requirements E. Scoping factsheet F. Project timeline G. Project organization H. Roles and responsibilities I. Project supervision J. Project conduct 1.1. Describe the vision, goals, and requirements of the Feasibility Study 2.2 Develop a project plan in accordance with the previously defined Work Scope Definition 	
3 Commitment and contribution	The Parties have committed to contribute to the Project by providing the human, financial and/or material contributions on those terms set out in this PCL (e.g., workstream internal meetings organized by Workstream Lead, status meetings with the whole project team workshops with the whole project team)	
4 Finance and budget	Each Party shall be responsible for, and pay all costs associated with, the performance of its obligations under this PCL (e.g., for surveys or demonstrators)	
5 Reporting	The Parties will on a monthly basis, or as otherwise agreed, meet to report on agreed content	

An overview of signees and participating companies is required to set up the Project Commitment Letter – Template to be sent out to project members

Please share the information below by [insert date]:

Signees / Project Supervision / Key Personnel


- Name
- Job Title
- Company
- E-mail address / Mobile number

Companies

- Full Registration Name
- Company reg. no.
- Address
- Postal Code
- Country

Project Commitment Letter (PCL)

 $\langle \mathbf{\bullet} \rangle$

EXPANDIN In

Congratulations on successfully completing the Feasibility Scoping Phase of your green corridor project!

This milestone signifies the establishment of a dedicated team with clear governance and assigned roles. A comprehensive project vision is articulated and substantiated with conceptual drawings, providing a visual representation for the green corridor project members. Additionally, the project team has shared key metrics regarding CO₂ abatement and the incremental cost of adopting green fuels. An agreement is formalized among project members, outlining project description and legal terms.

What comes next?

With this foundation in place, the stage is set for the Study phase to begin. During this phase, a thorough assessment of fuels, ports, vessels, and cargoes will be conducted, culminating in the final consolidation and edition of the project roadmap.

Simply click here to access the ready-to-use methodology for the next step in your green corridor journey.

Disclaimer

This Methodology is provided "as is" without any warranty of any kind, express or implied, including but not limited to merchantability, accuracy, completeness, or fitness for a particular purpose. Any reliance you place on this Methodology is strictly at your own risk.

While every effort has been made to ensure the accuracy and effectiveness of the content, Fonden Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping shall not be liable for any errors or omissions in the content, nor for any loss or damage arising from the use of the Methodology.

The example Project Commitment Letter included in the Methodology is for illustrative purposes only and shall not be considered legal advice.

Visit our website for more: www.zerocarbonshipping.com