METHODOLOGY

Green Corridors Pre-Feasibility Study Phase

Expected outcomes of the Pre-Feasibility Study

- The Pre-Feasibility Study phase aims to initiate Green Corridors maturation projects. It seeks to conduct a preliminary assessment of potential Green Corridors within a region (or focus area) by utilizing available public data. The method will outline the most promising and viable corridors (provides initial estimates of costs, CO₂ abatement, as well as Just & Equitable assessments for the 1st Wave corridors).
- At the end of the Pre-Feasibility Study phase, the project team will identify the most promising corridors (1st Suite), based on a technologically agnostic approach. This approach allows for a transparent evaluation.
- At the Consortium Incubation Workshop (CIW), the project team presents the 1st Suite corridors to relevant stakeholders within the commercial and public sphere. Through a democratic process, the list of 1st Suite corridors is refined to a list of 1st Wave corridors these are corridors which receive the most commitment.
- Following the CIW, the project team and stakeholders will engage in discussions based on the assessment findings. Subsequently, they will
 confidently select and decide to proceed to the Feasibility phase, ensuring a well-informed and strategic progression of the Green Corridors
 maturation projects.

Summary of Pre-Feasibility Scoping Phase

- During the Scoping phase, a consortium was established, where project goals were defined to foster a shared understanding of the project's objectives.
- Roles within the consortium were designated, and a robust project governance structure was established. The scope of work was clearly outlined, with the option to customize the suggested approach, facilitating a streamlined and expedited process for the Pre-Feasibility Study phase.
- The consortium was formalized through the issuance of a Letter of Intent (LOI), which delineates the terms, conditions, and responsibilities of each party involved in the Pre-Feasibility Study.
- As a result, all prerequisites were met, paving the way for the Pre-Feasibility Study phase to begin.

Methodology for Center pre-feasibility studies

The Pre-Feasibility Study phase in detail

This phase consists of 4 main stages. Throughout this document, all main stages are explained step by step.

 $(\mathbf{\dot{+}})$

4G. Introduction, vision and project set up

Purpose

- Introduction to area / region & constraints.
- Decarbonization vision for area / region.
- Objectives and project governance to conduct the study.

Key questions

- Why do we want to have green corridors in the defined area of interest?
- Which **key results** and focus areas for the corridors are important in the upcoming phases?
- What is the **region-specific baseline** and are there any **particularities**?
- How do possible green corridors support the area's overall social, ecological or economical goals and ambitions described in the vision?
- How is the pre-feasibility project governed? When and how do we take which action? Who is involved?

Importance

- Area specific overview and constraints
- <u>Vision</u> of possible green corridors in the defined area (basis for selection criteria).
- Specified <u>objectives</u> of possible green corridors in the defined area (basis for selection criteria).
- Project specific information timeline, governance (project plan), involved stakeholders, agreements, methodology.

4G. Introduction, vision and project set up

Proposed work

Write introduction to defined area of interest, and highlight essential characteristics, as well as possible constraints. Be specific and make sure to define the borders of your defined area of interest carefully to ease the data collection in following chapters.

State the overall decarbonization vision for the area and highlight how green corridors can contribute to realizing this vision.

Link the implementation of green corridors to specific, overall social, ecological or economic objectives of the region e.g. UN Global Compact, sustainability goals, climate action.

Create a short description of the proposed execution of the project, including governance, agreements, timeline and project partners.

Assessmentalong 4 domains

		2	3	4	5		
Work- streams	Introduction, vision and project setup	Alternative fuels	Port, storage, and bunkering infrastructure	d Trade routes, vessels, cargo and services	Policy, regulation, Just & Equitable	Selecting 1 st Suite of corridors	Consortium Incubation Workshop
Stake- holders	All stakeholders	Fuel producers	Port and bunkering operators	Shipowners and operators	All stake- holders, including regulators	Highest strategical level for the area of interest	All stakeholders
Scope	Introduction to area and constraints	Juction to area onstraints				List of 1 st Suite corridors to be updated based on CIW	
	Decarbonization vision for area	Data assess	ment of the main co	pmponents of possible green		List of recommended	Refine 1 st Suite to 1 st Wave through democratic process
Objectives and introduction to project governance	region allow for outlining the most promising and prs.		based on selection criteria: 1 st	Final report including necessary Appendix, initial cost estimate and CO ₂ abatement potential			
						Suite corridors	Initial engagement with stakeholders for potential green
			Workstreams	2-5 run in parallel			corridors
$\langle \mathbf{\bullet} \rangle$						I	Proposed way of moving forward into Feasibility Phase Page 9

Pre-Feasibility assessment

4-step process to move from Work Scope Definition to data collection using the data collection template

5H. Alternative fuels, timing, capacity and cost

Purpose

Fuel can be supplied from the area of interest (intra-regionally) or sourced from outside. Following points of attention apply for both **area of interest and outside:**

- Fuel choice and supply supply possibilities within the region in a given timeframe.
- Current and future **production capacity** with expected competition for fuels considered
- Fuel cost if possible, show the expected cost and explain the main drivers behind it.

Key questions

Intra-regional:

- What is the source of **renewable energy** (Wind, solar PV, ...) and **amount** (MW)?
- What is the range of expected production capacity of alternative fuels relevant for a corridor, based on announced projects, feedstock availability, regulation, and timeline?
- What are the main drivers impacting the cost of alternative fuels and price?

Extra-regional:

- What is the range of expected import of alternative fuels relevant to the corridor, based on announced projects, feedstock availability, regulation, timeline, etc.?
- What are the main drivers impacting the cost of alternative fuels and price?

Importance

Identifying the amount of fuel available in a green corridor is a key decision factor:

- ➡ This factor is crucial when pre-selecting potential green corridors (1st Suite)
- ➡ Insights from Workstreams 3-5 complement this information.
- The combined data allows the project team to compare and choose the most promising potential green corridors.
- ⇒ Project maturity and sectoral competition

5H. Alternative fuels, timing, capacity and cost

Proposed work

- Fuel choice (table 2.1): List of relevant alternative fuels to be assessed in the defined area.
- Energy supply (Table 2.2 / Table 2.3 / Table 2.6 / Table 2.7): Access database to find relevant renewable energy projects announced and generate overview of the source, capacity over time, intra-regional (Table 2.2 / Table 2.3) and extra-regional (Table 2.6 / Table 2.7). Estimate the expected amount of energy available for shipping.
- Fuel supply (Table 2.2 / Table 2.3 / Table 2.6 / Table 2.7): Access database to find fuel projects announced and generate overview of the source, capacity and availability of fuels over time, intra-regional (Table 2.2 / Table 2.3) and extra-regional (Table 2.6 / Table 2.7). Estimate the expected amount of fuel available for shipping.
- Assess project maturity and sectorial competition
- Fuel cost (Table 2.4 / Table 2.8):

If possible, get view on fuel cost – either through publicly available data or through interviews with stakeholders. Insert data from the area (Table 2.4) and from outside the area (Table 2.8), e.g. electricity price, fuel production cost (CAPEX, OPEX)

Why collect this data

• Fuel choice:

Align on which fuel you want to focus. This is critical as the following data collection depends on this choice.

• Fuel supply:

Availability of alternative fuels over time will determine green corridors in your later selection. If an alternative fuel is not available within the region it might be possible to import it.

• Fuelcost:

Needed input to inform investment decisions throughout the value chain. Both regarding fuel from within the area of interest and imported fuel.

Fuel supply

Fuel for a region can be supplied in different ways

Context

While some regions have easy access to intra-regional fuel supply, other regions may choose to import fuel from abroad

Reasons for this can be, among others:

- Unavailability of fuel supply locally
- More costeconomic fuel supply from the global market

C)ptionsforfuelsupply	Rationale		
Intra-regional	1 Co-location of production and bunkering Fuel supply from local energy and fuel projects which could be operational within the next few years ¹	 Proximity to Green Corridor Timely availability of fuel Increased political support for Green Corridor Leverage multi-modal synergies for transport Potential to improve local energy access 		
	2 Fuel production in region Fuel supply from projects that could be developed in the region within the next few years ¹	 Relative proximity to Green Corridor Higher uncertainty about the development and completion of fuel projects Increased political support for Green Corridor Potential to improve local energy access 		
	3 Fuel production in country Fuel supplied from project that could be developed elsewhere in the country within the next few years ¹	 Relative proximity to the Green Corridor Higher uncertainty about development and completion of fuel projects Depending on the country, costs and the regulatory environment in different regions can be discriminating factors Increased political support for Green Corridor Creation of new green jobs and economic diversification 		
Extra-regional	4 Fuel production globally – physical trade Fuel imports from projects elsewhere in the world, enabled by the low cost of shipping the fuel	 More complicated stakeholder environment across countries Depending on the countries, costs and regulations can be discriminating factors Not improving local energy access Added emissions through transport 		
	5 Fuel production globally – book & claim Use of 'swapped volumes' in a book & claim system, leveraging international fuel production	 More complicated stakeholder environment No clear book & claim standards as of today – potentially a lack of transparency Not improving local energy access Added emissions through transport 		

Inspired from: <u>GMF_WA-East-Asia-Iron-Ore-Green-Corridor-Feasibility-Study.pdf (globalmaritimeforum.org</u>)

Estimating fuel availability for shipping

Map energy and fuel projects in region - Example data template

	Workstream 2		
Map energy and fuel pro	ojects in region - Ex	kample data templa	ate
	Project 1	Project 2	Project 3
Company name			
Site (location)			
State (region)			
Renewable source (e.g., sun, wind, hydro)			
Renewable energy amount (MWh/year)			
Fueltype			
Capacity (KT/Year)			
Project status ²			
Renewable supply (e.g., underway, in place)			
Financing (e.g., underway, in place)			
Groundwork (e.g., underway, completed)			
Construction (e.g., underway, completed)			
Commencement target year/forecast			
Production volume in 2025 (KT)			
Production volume in 2030 (KT)			
Production volume in 2035 (KT)			
Production volume in 2040 (KT)			
Production volume in 2045 (KT)			
Production volume in 2050 (KT)			
Offtake agreements			

2. Options: (1) In operation, (2) final investment decision (FID), (3) sanction, (4) Feasibility Study (F/S), (5) idea (speculative)

Map energy and fuel projects in region - Example output (1/2)

Deep dive follows

Cumulative No Sites kt 28 10,653

REX PANDIN

Example output

Planned fuel production development by year, capacity, fuel type, and location *(developed based on data template on previous page)*

1,000 - 2)

250 - 500

100 - 250

Green Fuel Production in Chile by 2028

Page 17

Map energy and fuel projects in region - Example output (2/2)

ET TYLINE

Estimate total intra-regional fuel availability – Project maturity

Project 1 (fuel name) Project 2 (fuel name)

Project 5 (fuel name)

Project 7 (fuel name) Project 9 (fuel name) Project 6 (fuel name) Project 8 (fuel name) Project 10 (fuel name)

A. Intra-regional fuel production by fuel projects

Exemplary overview of fuel projects³, kilotons

B. Estimated intra-regional fuel availability with Maturity Index applied Exemplary overview of fuel projects ³ with Maturity Index

Maturity Index

The Maturity Index is applied to the total intra-regional fuel capacity to estimate how much of the fuel will be available for use within a specific timeline

Example: If project is in operation, 100% of the fuel is estimated to be available. If it is only an idea, it is estimated that 20% will become available

Percentages can be adjusted as per the Project members' judgement

In Operation	100%
Final Investment Decision (FID)	98%
Sanction	90%
Feasibility Study (F/S)	50%
Idea (Speculative)	20%

Estimate intra-regional fuel availability for shipping – Sectorial competition

Project 3 (fuel name) Project 4 (fuel name)

Project 5 (fuel name) Project 6 (fuel name) Project 7 (fuel name)

B. Estimated intra-regional fuel availability for

shipping with Maturity Index and Sector

Project 8 (fuel name) Project 10 (fuel name)

Project 9 (fuel name)

A. Estimated intra-regional fuel availability with Maturity Index applied (from step 2.B)

Exemplary overview of fuel projects ⁴ with Maturity Index applied, kilotons

Competition Factor applied Exemplary overview of fuel projects ⁴ with Maturity Index and Sector Competition Factor applied, kilotons

12,000	
11,000 -	
10,000 -	
9,000 -	
8,000 -	
7,000 -	
6,000 -	
5,000 -	
4,000 -	Diafual
3,000	— 40%
2,000	
1,000	CH ₃ OH
	- 00%
2024 2025 2026 2027 2028 2029 2030	

Sector Competition Factor

The Sector Competition Factor is applied to the total fuel production for each of the fuels to estimate how much of the fuel will be available for shipping

Percentages are to be adjusted as per the Project members' judgement of the expected fuel offtake for a specific fuel project. Percentages below are only exemplary

H ₂	10%
NH ₃	50%
CH ₃ OH	60%
CH ₄	30%
Biofuel	40%

Assessment can alternatively also be made by fuel type

51. Port, storage and bunkering infrastructure

Purpose

- Identify ports in the defined area; analyze and describe crucial, port specific restrictions and trade.
- Identify **current** potential import, storage and bunkering of relevant chemicals at ports in the defined area.
- Do a 'port readiness level' assessment for relevant ports, to compare different ports in the area independently - including cargo handling, bunkering port calls of traditional and alternative fuels.
- Estimate **timing** for ports being **ready** for green corridors.
- **Compare** ports in region by using their port chemical score.

Key questions

- Which **potential ports** can support the green corridor?
- What type of cargo are they handling and are there any **port specific restrictions**?
- What is the **current storage** and **bunkering infrastructure** in the area?
- What is the current **port readiness** level and what is the **expected outlook**?
- Compare ports in region by using their port chemical score.

Importance

Current infrastructure:

Handling relevant chemicals today can give an indication of readiness levels related to specific alternative fuels and indicate if a port should be favored against another (cf. Port chemical score assessment).

Future infrastructure:

The Port Readiness Level Assessment for cargo, port call and bunkering indicates a potential timeframe for establishing a green corridor with specific alternative fuel.

51. Port, storage and bunkering infrastructure

Proposed work

• Identify ports:

Make list of all relevant ports - Option to use port chemical score as initial screening.

• Port specific restrictions (Table 3.1):

Populate data sheet with relevant objective data: water depth, degree of congestions, etc. The list of examples is for reference only, so please add any characteristic relevant for ports in your defined area such as but not limited to:

- o ownership and operation
- o location,
- o water depth,
- o congestion degree,
- o current and predicted handling (limited number of ships per day, limited storage capacity, etc.),
- port infrastructure (limited number of cranes, limited handling of cargo, transport type from port to destination, etc.),
- ecological or social regulations (limited port growth, etc.)
- Current infrastructure (Table 3.2):

Map the current ability to handle fuel oils, LNG, ammonia, methanol and other relevant chemicals in your area of interest. Assess the infrastructure in place and estimate the technical development stage to make ports comparable.

• Future infrastructure (Table 3.3 / Table 3.4):

For each port to be considered, make Port Readiness Level Assessment for cargo handling, port call and bunkering to assess the current and future ability to handle alternative fuels

• Port specific trade (Table 3.5 / Table 3.6):

Map cargo segments and trade patterns of the selected ports under the categories of import and export

Why collect this data

• Identify ports:

Get a baseline overview and deselect non-relevant ports

• Port specific restrictions:

Identify discriminating factors that will influence your choice of ports and the actual feasibility of green corridors e.g. water depth limits, the number of vessel segments entering the port.

Current infrastructure:

Handling relevant fuels and chemicals today can give an indication of readiness levels related to specific alternative fuels and indicate if one port should be favored over another.

• Future infrastructure:

The Port Readiness Level Assessment for bunkering and port call indicates a potential timeframe for establishing a green corridor with specific alternative fuel.

• Port specific trade:

Get an understanding of trade and cargo type, e.g. if you want to select your green corridor based on which ports carry out the highest volume / value of trade.

.......

Port selection process in Pre-Feasibility

The port readiness level assessment (for cargo, call, bunkering) is part of the port selection process in Pre-Feasibility

Defineareaofinterest	Select relevant ports for further assessment	Send GCPQ ⁵ to relevant port stakeholders	Assess the port's readiness level	Ports for Green Corridor	
 Refer to project vision, goals, and requirements defined in the Scoping Phase, e.g., Specified region Specified use of fuels 	 Select relevant ports for further assessment based on, e.g., Highest level of port chemical score Existing infrastructure (storage, loading/ unloading bunkering options) Location (proximity to large fuel projects) Announced ambitions Collect data through literature/desktop search and refer to Workstream 2 data 	Share the Green Corridor Port Questionnaire (GCPQ) with relevant port stakeholders together with an overview of the Port Readiness Level indicator developed by the IAPH/ WPCAP ⁶ to understand the port readiness related to bunkering and calling of alternative fuels Set up meetings and interview relevant port stakeholders as required	Based on the port stakeholders' response, assess the port's readiness level by fuel type and year	Based on port readiness level assessment as well as the physical set up, ports will be deemed relevant for corridors in Workstream 6	
	refer to Workstream 3 data collection template	Port readiness le			
	Factors to select ports may vary depending on the project	If quantitative assessment is not p qualitative assessment as outlined assessment"			

Green Corridor Port Questionnaire – Example (1/2)

Workstream 3					¢f.
Green Corridor Port Questionnaire – Example (1/2)					MARKE
$\overline{(2)}$	A	Iternative	fuels		
Introductory questions	Μ	lethane	Methanol	Ammonia	Hydrogen
Do you expect to be either a bunker port or port of call for any of these alternative fuels? (Please fill in "bunker" or "port of call" or "cargo") Bur	argo Call nker				
Is your port, as of today, ready to receive ships carrying alternative fuels as chemical cargo? (Please fill in "v	ves" or	r "no")			
Will your port, as of 2025, be ready to receive ships carrying alternative fuels as chemical cargo? (Please fill	, I in "ye	es" or "no")			
Will your port, as of 2030, be ready to receive ships carrying alternative fuels as chemical cargo? (Please fill i	in "yes	s" or "no")			
Is your port, as of today, ready to receive ships fueled with alternative fuels? (Please fill in "yes" or "no")					
Will your port, as of 2025, be ready to receive ships fueled with alternative fuels? (Please fill in "yes" or "no")					
Will your port, as of 2030, be ready to receive ships fueled with alternative fuels? (Please fill in "yes" or "no")					
Is your port, as of today, ready to bunker ships with alternative fuels? (Please fill in "yes" or "no")					
Will your port, as of 2025, be ready to bunker ships with alternative fuels? (Please fill in "yes" or "no")					
Will your port, as of 2030, be ready to bunker ships with alternative fuels? (Please fill in "yes" or "no")					

Green Corridor Port Questionnaire – Example (2/2)

	Alternative fuels				
Port Readiness Levels (quantitative)	Methane	Methanol	Ammonia	Hydrogen	
Using the scale outlined on the next page, what is your current Port Readiness Level for the handling of each chemical as cargo? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your expected Port Readiness Level for the handling of each chemical as cargo in 2025? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your expected Port Readiness Level for the handling of each chemical as cargo in 2035? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your current Port Readiness Level to receive vessels fueled with each alternative fuel? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your expected Port Readiness Level to receive vessels fueled with each alternative fuel in 2025? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your expected Port Readiness Level to receive vessels fueled with each alternative fuel in 2035? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your current Port Readiness Level to bunker vessels with each alternative fuel? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your expected Port Readiness Level to bunker vessels with each alternative fuel in 2025? (Please fill in the corresponding number, ranging from 1-9)					
Using the scale outlined on the next page, what is your expected Port Readiness Level to bunker vessels with each alternative fuel in 2035? (Please fill in the corresponding number, ranging from 1-9)					

EX PLIDIE

Port Readiness Level indicator for Alternative Fuels for Ships (PRL-AFS)

2050

9

6

8

9

9

9

PRL-AFS - Example output

A. Example output: Table⁸

Illustrative port readiness level assessment by port and fuel, [year]

Fill table with numbers 1-9 from the PRL indicators based on input from port authorities (conduct this assessment for multiple years to evaluate the port's expected trajectory) and compile the average score in order to be able to prioritize certain ports and fueltypes

B. Example output: Time-series data graph by port and fuel

Illustrative port readiness level assessment by port, fuel, and year

8 : Excel template available

9: PRL above 7 indicates deployment of call/bunkering system (1-3 indicates the research phase, 4-6 refers to the development phase). See previous page for context

REA PAID

Alternative: Qualitative port assessment (QPA)

Context

In some projects, a quantitative assessment may not be possible in Pre-Feasibility

In those cases, the qualitative assessment provides an alternative and can help facilitate the dialogue with relevant port stakeholders

	Alternative fuels					
Port Readiness Levels (qualitative)	2023	2025	2030	2040	2050	
By when do you expect the port to be able to handle methane as a chemical cargo?						
By when do you expect the port to be able to bunker methane?						
By when do you expect the port to be able to receive methane-fueled vessels?						
By when do you expect the port to be able to handle methanol as a chemical cargo?						
By when do you expect the port to be able to bunker methanol?						
By when do you expect the port to be able to receive methanol-fueled vessels?						
By when do you expect the port to be able to handle ammonia as a chemical cargo?						
By when do you expect the port to be able to bunker ammonia?						
By when do you expect the port to be able to receive ammonia-fueled vessels?						
By when do you expect the port to be able to handle hydrogen as a chemical cargo?						
By when do you expect the port to be able to bunker hydrogen?						
By when do you expect the port to be able to receive hydrogen-fueled vessels?						

5J. Cargo & services, vessels and routes

Purpose

- Analyze import and export by cargo type, volume, value, (vessel / operator specific) trade routes and vessel segments for defined region.
- Analyze **service activities**, volume and **value** for defined region.
- Analyze emissions and fuel consumption in the region by segment in a reasonable timeframe – including emission factor¹ of ships.

Key questions

- Which are the **main cargo types** and **services** in the area (volume and value)?
- Which are the **main trade routes** in the defined area (where from / where to)?
- Which types of vessels are mainly operated?
- Which vessel segment is responsible for which emissions and fuel consumption within the area?
- Which (unique) vessels appear on regular basis in the area?

Importance

- Understand most important trade flows and service activities.
- To **identify suitable vessels** for operation within the green corridor.
- The vessel selection process is used to **narrow down potential green corridors** in the pre-selection phase (1st Suite).

1. Vessel emissions divided by number of ships in region. This to identify the vessel segment with the highest impact on emissions reduction.

5J. Cargo & services, vessels and routes

Proposed work

Cargo and trade: List products (export and import) per volume, value and vessel segments relevant to the cargo type.

Vessel specific service: Make overview of international and domestic service handling (ferries, cruises, RoPAX, tugboats etc.), and map service against vessel segments.

Vessel analysis: Create overview of vessel segments operating in area of interest, including number of vessels, voyages, fuel consumption and CO_2 emissions in a reasonable timeframe.

Why collect this data

Cargo and trade (Table 4.1 / Table 4.2): Get a product-specific commercial overview of the defined area to select green corridors with specific products or cargo type profiles.

Vessel specific service (Table 4.3 / Table 4.4): Get a servicespecific commercial overview of the defined area, to select green corridors with specific service types.

Vessel analysis (Table 4.5): Understand which vessels appear in the area, how often they appear and what their emissions are.

Vessel selection process in the Pre-Feasibility assessment

1	2	3	4	5
Conduct cargo and trade services analysis	Create gross list of vessels in segments of interest	Identify vessels for green corridor	Assessperformance of selected vessels	Consolidate
Which vessel segments are relevant for the most important trades? <i>Example:</i> When commodity type is known, assess which vessel type and size are predominantly used to ship that specific commodity. For example, if the cargo is grain, the vessel segment of interest is dry bulk and size could be Panamax. If the cargo is iron ore, the vessel segment of interest could be Capsize.	Based on the outcome of step 1 (the defined vessel type and size), list existing vessels in region that comply within segment of interest	Shortlist vessels based on selection factors, e.g., age, carrier size, etc. Assess the option for retrofitting existing vessels or alternatively new-builds Out of the shortlist, identify vessels that are suitable for the green corridor, depending on consumption profile, speed, operator, etc.	 For selected vessels, assess performance of selected vessels based on parameters, e.g., Fuel consumption Emissions 	Consolidate vessel selection outcomes

For each identified existing and emerging trade

Ð

Can be done for a country, region, or port and be both import and export

Port A => Port B / Cargo and trade – Year 20XX

■ Vehicles ■ Machinery ■ Textile ■ Plastics ■ Steel ■ Chemicals ■ Refined products ■ Electronics ■ Rubber ■ Wood

REX PARA

EX PART

2 Create gross list of vessels in segments of interest & 3 Identify vessels for green corridor

Illustrative shortlisting of vessels based on age and carrier size as example parameters

Assess performance of selected vessel segments

	Segment 1 E.g.: Bulkers	Segment 2 E.g.: Containers	
E.g.: Number of ships			
E.g.: Engine output			
E.g.: Total fuel consumption			
E.g.: Total CO ₂ emission			

ET PANDIN
Assess performance of selected vessel segments – Example Northern European & Baltic green corridor pre-feasibility study

Summary of fuel consumption and CO₂ emissions (tank-to-wake) for the Baltic Sea fleet during 2019.⁶

(4	4	4	4	4	4	4	4	4	
	RoPax	Tanker	Bulk	Container	Vehicle	Cruise	Passenger	Service	Fishing	Total
Ships (#)	211	1,981	4,035	492	264	87	465	388	784	8,772
Fuel Main (kT/yr)	1,070	649	720	420	374	130	46	36	21	3,466
Fuel Aux (kT/yr)	181	363	274	247	62	39	25	41	21	1,253
Total fuel (kT/yr)	1,251	1,012	994	667	436	169	71	77	42	4,719
CO ₂ (kT/yr)	3,804	3,074	3,021	2,027	1,325	515	217	233	130	14,346

ET PARTE

When all relevant existing and emerging trades (import and export) and services have been assessed, and their relevant vessel segments identified, a consolidated list of identified routes, their involved ports, the likely fuel, the CO₂ emission potential etc, can be created

CargoType	Cargo Status	Segment	Ports involved	Alternative Fuel(s)	Emissionper route tCO ₂ eq	Emission for one vessel per year tCO2eq/y	
			Port A Port B	Ammonia			
Cargo 1	Existing	Vessel Segment 1	Port A Port C	Ammonia			
			Port D String	Ammonia			
		Vaccal Sagment 2	Port A Port F	Ammonia/Methanol			
Cargo 2	Existing	vessei Segment 2	Port B Port?	Ammonia/Methanol			
		Vessel Segment 3	Port G Port H	Methanol			
	Existing	Voccol Sogmont 4	Port A String	All			
Cargo 3		Existing	vesserseyment4	Port J String	All		
		Vessel Segment?	Port A Port?	All			
Corgo 1	Emoraina	Vessel Segment 5	Port L Port C	Ammonia/Methanol			
Cargo 4	Emerging	Vessel Segment?	Port M Port N	Hydrogen			
			Port B Port K	Methanol			
Service 1	Existing	Vessel Segment 6	Port G Port?	Methanol			
			Port C Port M	Methanol			
Sonice 2	Emorging	VesselSegment?	Port B Port?	Methanol/Hydrogen			
	Emerging	VesselSegment?	Port? Port?	Methanol/Hydrogen			

5K. Regulations / Just & Equitable

5K.1: The regulatory assessment is initiated with the collection of data on policies and regulations of the green corridor within the focus area. With this, it is possible to assess the impact of the policies and regulations on the value chain and identify factors that favor green corridors in certain areas.

5K.2: The Just & Equitable assessment consists of a question catalogue to guide research and reflection on the socio-economic opportunities and risks related to the focus area. It is the basis for addressing existing risks and opportunities. The following section provides guidance as to which resources can/will address the questions, and context around Just & Equitable consolidation within green corridors.

5K.1 Regulations

 In the defined area of interest, map social, ecological, commercial, technical (e.g. electric poles in the area, incentive programs, nature reserve) relevant landscape within:

Purpose

- o regulations,
- o policies
- Identify factors within the above-mentioned landscape for defined area of interest which can impact the decisions on green corridors.

Key questions

- Which **policies and regulations** can possibly affect establishing a green corridor?
- Which factors need to be considered when assessing green corridors in this area?

Importance

- Evaluation of the impact of regulations on the potential formation of a green corridor.
- To combine insights from Workstreams 2-4 with the regulatory assessment results.
- Use the regulatory assessment findings to (de-)select potential green corridors based on their viability.

5K.1 Regulations

Proposed work

Identify policy and regulatory factors, which will have impact on type, location, fuel leading to preference for green corridors in one area over another.

Assessment insights Consolidate relevant information in tables and maps depending on your level of assessment (Tables 5.1.1, 5.1.2, 5.1.3, 5.1.4).

Assess area-specific information regarding, e.g. social or ecological incentives, supporting development in infrastructure, climate targets and ambitions.

Why collect this data

Assessment insights (Tables 5.1.1, 5.1.2, 5.1.3, 5.1.4): Identifying policy, regulatory and funding (discriminating) factors in defined area will help pinpoint the most optimal green corridor options.

3-step process to assess the regulatory environment of the green corridor

• Continent level

1. Understand the level of detail required in the regulatory assessment

Example:

If the chosen area of focus is a country, e.g., Chile, the regulatory assessment should be conducted on region level, e.g., Magallanes

10: It is suggested to choose only one regulatory assessment level due to the limited scope of the Pre-Feasibility Study and to avoid unnecessary detailing of regulations before moving into Feasibility. For example, if the focus area is a continent, the regulatory assessment should only be conducted at country level (not at region or port level)

2. Collect data for regulatory assessment: Data template

11: Only one regulatory assessment level can be chosen. For example, if your focus area is a continent, only conduct the regulatory assessment on country level (not on region or port level) 12: Region level means regions within one country IF AD A

2. Collect data for regulatory assessment: Data template - Examples

EXAMPLES HAVE BEEN TAKEN FROM VARIOUS PROJECTS

Level of regulatory assessment ¹³		Type of regulation	Regulator	Keystatements	Source	
	Port-level assessment	Law	Chilean government	Publicly owned ports cannot operate terminals	Chilean Green Corridor Network	
	Region-level assessment ¹⁴	Law	Chilean government	Development poles to improve grid connection	Chilean Green Corridor Network	
E C C	Country-level assessment	Price	Market	Tariffs on electricity are under revision	Northern European Green Corridor Network	
(B	Continent-level assessment	Law	European governments	EU ETS; Country-specific carbon taxes	Carbon Tax: "laboratory" Europe shows U.S. it has no effect on aggregate jobs, growth - Energy Post	

13: Only one regulatory assessment level can be chosen. For example, if your focus area is a continent, only conduct the regulatory assessment on country level (not on region or port level 14: Region level means regions within one country

EX-PAIDE

3. Evaluate whether factors are drivers or barriers for a green corridor

Barrier for green corridor 2 Neutral 3 Driver for green corridor

Context

For each factor, assess at the required port / region / country / continent level (whichever applies¹⁵), whether the factor acts as a driver or barrier for the development of a green corridor

Type of regulation	Regulator	Key statements	Source	Discriminating factor for green corridor	Impact score of discriminating factor (1-3)
Price	Market	Tariffs on electricity are under revision	Northern European Green Corridor Network	Electricity price	1
Rule	tbd	No standards for ammonia as alternative fuel	Northern European Green Corridor Network	Ammonia handling	2
Impacto	coro		Discriminating factor	rs for green corridor	
allowsfo	r	Country	Ammonia handling	Electricity price	Average score
analyses of		Germany	2	1	1.5
	lating 🣥	NI 1 1	\mathbf{C}	0	2.0
discrimin		Netherlands			2.0
discrimin factors fo	or green	Denmark	2	2	2.0
discrimin factors fo corridors country l	or green	 Netherlands Denmark Poland 	2 2 1	2	2.0 2.0 1.5

Exemplary analysis of discriminating factors on country level

5K.2 Just & Equitable

Purpose

The Just & Equitable assessment is an important tool for creating awareness and later address potential socio-economic risks and opportunities associated with the geographic location of a green corridor.

The J&E assessment is a desk-research exercise following a set of pre-defined questions in the data collection template.

The J&E assessment is not intended to be used to (dis)qualify a specific corridor. The Just & Equitable assessment concerns the area of interest and is meant to serve as a foundation for further research, discussion and prioritization that go beyond technical, financial and regulatory feasibility.

The exercise will be repeated in Workstream 7 for 1st Wave corridors.

Key questions

- What are the key socio-economic risks and opportunities and derived implications for potentially creating a green corridor in the area of interest?
- Are there any Just & Equitable concerns for the most promising corridors (1st Wave)?

Importance

To ensure that a green corridor is created in a just and equitable way, it is crucial to extend considerations beyond technical, regulatory, and cost factors.

By creating awareness of and addressing potential socio-economic risks and opportunities at an early stage, these can be either mitigated or leveraged as part of further developing the corridor, thereby increasing the chance of success and positive impact on the surrounding communities.

5K.2 Just & Equitable

Proposed work

Just & Equitable assessment of the focus area.

Collect data through desk research on:

- Any existing Just Transition regulations
- Country's income level and identification with the Global South
- The human rights situation in the area
- Level of electricity access
- Level of dependence on fossil fuels in the area.

Why collect this data

Just & Equitable assessment of the focus area (Table 5.2.1): This data gives high-level insight into the situation in the area of interest and acts as an initial identification of potential socioeconomic risks and opportunities, and considerations on how to address these. Additionally, this data also informs directions of deeper research in the Feasibility phase.

The J&E assessment of the focus area follows a simple 4-step process

1. Understand the level of
detail required

2. Familiarize yourself

3. Collect data

4. Reflect on the implications for corridors in these areas

Understand the level of detail required for the Just & Equitable assessment of the focus area (see next slide). Become acquainted with the questions, the context and guidance on where to find appropriate data.

Collect the relevant data by following the question catalogue, including risks and opportunities.

Collect data in data collection sheet "Just & Equitable XX.X"

Reflect on the implications of the collected data for the creation of a Just & Equitable Transition in each area.

The area of focus informs the level of detail needed for the J&E assessment

Dimensions, questions and implications to consider as part of Just & Equitable

Existing Just & Equitable Transition ambitions or regulation	Does the area have a Just Transition vision or any regulations, laws, or working programs around Just Transition and/or social sustainability?	If so, the green corridor could be anchored within this.
Global inequalities	At what income level is the country categorized and is it within the Global South?	Socio-economic benefits from the corridor might be maximized if one or more country of low- or middle-income is included, rather than a corridor exclusively connecting high-income countries.
	How dependent is the country on fossil fuels?	A high dependence on fossil fuels for the national economy can be an indicator that the country might especially benefit from a green corridor project, as it involves a diversification of the energy sector.
Human Rights & Corruption	What is the human rights situation in the country? Are there any particular risks or opportunities to be aware of?	It is critical for a green corridor consortium to be aware of any human rights challenges and be ready to address these throughout the development of the corridor, especially in conversation with regional authorities.
Access to essential resources	What is the level of electricity access? What share of produced energy is from renewables?	If electricity access below 100%, special attention should be paid to opportunities of increasing electricity access through means of the green corridor.
Decent green jobs	What share of the working population is employed in jobs directly linked to the fossil fuel industry?	If a large share of the working population is employed in jobs directly linked to the fossil fuel industry, then their jobs are threatened in the mid- term. In such cases, special attention should be paid to creating opportunities for re-and upskilling of workers.

Questions to consider as part of the J&E assessment: Example from Chile

Dimension	Pillar	Questions to consider	Answers (and reference to sources)	Implications
Nation	Existing Just & Equitable Transition ambitions or regulation	D o es the area have any regulations, laws, or go als, or working programs around Just Transition and/or social sustainability?	Yes. Chile has a Just Transition Strategy for Energy, published in 2021 and anchored in their NDC (<u>NDC registry</u>).	Further research into the Just Transition Strategy for Energy could be helpful in the next stage to potentially identify relevant subsidies, etc. The existence of a national Just Transition Strategy could also be used to gain support for the corridor from stakeholders in Chile.
	Global inequalities	At what income level is the country categorized and is it within the Global South?	Chile is classified as a high-income country by the World Bank (<u>World Bank</u>).	With the focus area being a high-income country, efforts should be made to identify ways of how this corridor could also benefit lower income countries, e.g. through knowledge and technology transfer, in an attempt to avoid exacerbating the existing global inequity.
		What percentage of annual GDP is based on fo ssil fuels?	About 26% of total electricity generation through renewables in 2020 (hydro, biofuels, wind, solar PV, geothermal). Relatively small export of oil or natural gas goal compared to import. (source: <u>https://www.iea.org/countries/chile</u> , Sustainabe development goals/share of renewable energy).	This suggests that Chile is not extremely strongly dependent on fossil fuel. However, there is a large opportunity to increase the share of renewables in electricity generation.
	Human Rights, Conflict & Corruption	What is the human rights situation in the country? Are there any particular risks or opportunities to be aware of?	Consult Human Rights Watch for information	In the Feasibility and Implementation phases of the corridor, the existing human rights challenges should be addressed. This could include addressing them with the national public stakeholders, e.g. governments, who are involved in the consortium. Further, processes like hiring processes and labor conditions should try to counteract potential gaps in human rights, e.g., by encouraging and actively searching out the employment of people with disabilities in the fuel plant/ports related to the green corridor.
Community	Access to essential resources	What is the level of electricity access?	100% <u>(World Bank)</u>	Limited implications. If the electricity access is less than 100%, the green corridor should identify opportunities to increase the population's electricity access through the green corridor investments.
Workers	Decent green jobs	What share of the working population is employed in jobs directly linked to the fossil fuel industry?	No information could be found. Unemployment rate in 2022 was 7.8% (<u>https://data.worldbank.org/indicator/SL.UEM.TOTL.ZS?locations=CL</u>)	The green corridor could be harnessed to create new decent green jobs and lower the unemployment rate.

EX YANDIE

6L. Selection criteria for potential corridor selection framework

• Define and prioritize selection criteria for green corridors (might be related to vision and objectives).

Purpose

- **Provide 1-3 corridors** for the selected and prioritized selection criteria subsets.
- Create list of possible green corridors including selection criteria.

Key questions

- Which parameters can be used as **selection criteria** and how are they **ranked and weighted**?
- Which are the possible green corridors?

-

Importance

- The stakeholders in the region establishing the selection criteria for green corridors is a crucial stage gate.
- Facilitate alignment within the project team on key criteria for green corridors.
- Transition from database to the 1st Suite of green corridors.

6L. Selection criteria for potential corridor selection framework

Proposed work

Corridor selection criteria: Identify relevant Corridor Selection Criteria based on vision, objectives (as outlined in Chapter 1) and other insights related to the defined area of interest.

Rank Corridor Selection Criteria: A ranking of the criteria is based on insight and subjective (stakeholder-specific) choices (Table 6.1). The highest five will generally be used.

List green corridors: Each criteria configuration will lead to the identification of a series of prioritized green corridors (Table 6.2).

Why collect this data

Corridor selection criteria: Define the Corridor Selection Criteria for ranking / prioritization of potential green corridors.

Rank Corridor Selection Criteria (Table 6.1): Rank criteria against preferences.

List green corridors (Table 6.2): This is the final result of your decisions and prioritization.

Page 56

Two options to generate selection criteria

18: Excel template available

Selection criteria options

Chapter analysis

Green Corridor selection criteria (might be related to vision and objectives) and ranking (stakeholder-specific) of criteria

Criteria	Example	Table
1	Transport of cargo / service	Table 3.5, 3.6 and 4.1 to 4.4
2	Domestic trade route	Table 4.3
3	International trade route	Table 3.2, 3.3, 4.2, 4.3 and 4.5
4	Transport of top 10 cargo	Table 3.2 and 3.3
5	Primary trade routes	Table 4.2 to 4.4
6	Any corridor from largest port	Table 3.2 and 3.3
7	CO ₂ emissions	Table 2.5, 2.10 and 4.1
8	Any corridor until 2030	Table 2.2, 2.3, 3.5 and 3.6
9	Use of alternative fuel	Table 2.2, 2.3, 3.5 and 3.6
10	Regulatory feasible	Table 5.1.x

Selection criteria might not always be onedimensional, meaning that you will have to combine data from different tables and include qualitative knowledge. In this case, an objective result is always difficult, and the list of corridors will be influenced by the ones executing the Pre-Feasibility assessment.

Please keep in mind that the **qualitative data**, which will be gathered during **interviews** with the relevant **stakeholders**, are equally important and can indicate what to focus on.

A. Define and prioritize selection criteria subsets in the Excel tool (1/2)

A. Define and prioritize selection criteria subsets in the Excel tool (2/2)

			Ele	ements Corridor specific options
			Tra	de and – Transport of cargo / service xy
			log	istics – Transport of top 10 cargo (volume)
				 Transport of top 10 cargo (value)
				 Primary trade routes (port A to port B)
		Α		 Expected future growth, CAGR 2021-25
li c				 Any corridor from largest port
orrid pecif	Pick from list	•	Em	issions – CO ₂ emissions
Ŭ ø °			Co	rridor – Any corridor until 2030
gion cific ions	Insert item		rea	diness – Alternative Fuel 1 readiness with specific
Re _f spe opt				
	Timing	year		- Regulatory leasible
Pg s	Intrafuel (fuel production in project area)		Ve	ssel – Any corridor with specific vessel type
alue	Specific fuel	fuel type		 Primary vessel types in region
Sta	Vessel segment	•		
	Domestic			
			Add	d region-specific details related to corridor-specific options,
	Timing: Input first year of operation	Vessel segments: Container, bulk carrier, tanker, RoRo, gas carrier, cruise, general cargo, tug, ferry, not relevant	Fue	el types: e-ammonia, e-methanol, e-hydrogen, blue ammonia,
			bio- ami	-methane, e-methane, bio-methanol, bio-diesel, e-diesel, non- monia, blue hydrogen, not relevant

From Excel tool to prioritized selection criteria

Template with selection criteria

		A
Corridor specific options	Pick from list	Transport of top 10 cargo (value)
Region specific options	Insert item	NA
	Timing	2030
ard	Intrafuel (fuel production in project area)	yes
Standa value	Specific fuel	e-Ammonia
	Vessel segment	not relevant
	Domestic	no

Each column makes up one selection criteria subset. All selection criteria subsets are prioritized and summarized to serve as the basis for further discussion

High-level summary of prioritized criteria subsets (exemplary)

Each of the green corridors selected for further discussion corresponds to one of the prioritized selection criteria subsets 1st Suite of green corridors (Section 6M) EX PAROL

6M. First suite of corridors

Purpose

- Identify potential green corridors through a comprehensive listing process.
- Use the data gathered in Workstreams 2-5 and consider multiple criteria when deciding which green corridors to pursue.
- Repeat the process as necessary, ensuring a comprehensive evaluation.
- Decide the specific number of corridors considered viable for further exploration.

Importance

- While the goal is CO₂ emission abatement, the fastest way to achieve this may not involve addressing the largest emitters directly.
- In some regions, the availability of specific fuels may render a particular vessel segment more relevant, while in other areas, secondary attributes such as the availability of a local workforce, opportunities for infrastructure development, or the potential for increased technical insights may take precedence.
- Decisions may also be influenced by specific regulations or funding options, providing certain corridors or fuel segments with a strategic advantage.
- It is crucial to note that the dataset does not have to be exhaustive to form the foundation for deciding to proceed with the Feasibility assessment. If certain suggested data tables are not generated, it indicates that specific criteria cannot be activated.
- Conversely, the collection of additional data can generate supplementary selection criteria.
- The generation of 1st Suite corridor is data-driven and transparent.

Corridor generation based on the objective data (and subsequent data cube) and the Selection Criteria to determine areas for corridors

Data Gathering and Selection Criteria (WS 2-6A)

Gather data insight⁽¹⁹⁾ on energy and fuel project – 'build fuel layer'

WHAT: Public information on projects is scaled according to maturity and mapped according to capacity and timing.

WHY: Ensuring balance between available fuel and proposed corridors wrt fuel type, timing, capacity.

Gather data insight¹⁾ on ports – 'build port layer'

WHAT: Make assessment of port readiness wrt port of call and bunkering of fuel types.

WHY: Ensuring that proposed ports for corridors are ready in due time. **Gather data insight**¹⁾ **on cargo and vessels – 'build cargo and vessels layer'** WHAT: Gather information on trades (import and export) and services. Map typical vessel segment.

WHY: Allow corridors selected to match relevant existing and emerging trade. **Gather data insight**¹⁾ **on regulation, policies, Just & Equitable – 'build regulation layer'** WHAT: Gather information on relevant policies, regulations, Just Transition principles. WHY: Identify relevant policies, regulation and funding options which can enable green corridors.

Selection Criteria

Based on national strategies, climate action plans, decarbonization targets, Just & Equitable philosophy. Criteria decide how the data cube is 'sliced' to generate corridors. Determining which optics to use to produce the corridors from the data cube.

Develop Data Cube (WS 6B)

Generate corridors (WS 6B)

Desired outputs: The project team derives the 1st Suite of potential green corridors from the prioritized selection criteria subsets

Template with selection criteria

Corridor specific options	Pick from list	Transport of top 10 cargo (value)	
Region specific options	Insert item	NA	
	Timing	2030	_
Standard values	Intrafuel (fuel production in project area)	yes	
	Specific fuel	e-Ammonia	
	Vessel segment	not relevant	
	Domestic	no	

Each column makes up one selection criteria subset. All selection criteria subsets are prioritized and summarized to serve as the basis for further discussion

High-level summary of prioritized criteria sub-sets (exemplary)

Proposed criteria for corridor selection in Chilean Pre-feasibility Study	AREA	CARGO	OTHER
– Criteria Sub-set 1	*		
- Domestic use of Ammonia as Cargo and Ammonia as fuel before 2030		Ë	
– Criteria Sub-set 2	*		
- Transport of People internally in Chile on vessels by non-Ammonia Alternative Fuel before 2030		đá	
– Criteria Sub-set 3		Cũ 🔊	
- International Transport of a Top 10 Export (by value) good in 2030		*>*	
– Criteria Sub-set 4			00,
– One of the $Top 10 most CO_2 emitting vessels$ (in 2020) to be on Alternative Fuel by 2030	V		
– Criteria Sub-set 5		NH ₃]	
- International transport of Ammonia to enable ammonia as a future commodity before 2030			
– Criteria Sub-set 6		Ð	emall
- Any vessels and cargos which can sustain a corridor by 2027 by 5000 (?) t fuel/y	*	i DG	amount
		1	

Each of the green corridors selected for further discussion corresponds to one of the prioritized selection criteria subsets Suite of green corridors (exemplary)

	Loc.	ID	Short description				
	D	1	Chilean Powerplant Ammonia				
	D	2	Chilean Mining Explosives Ammonia				
	D	3	Austral Ferries				
	D	4	Austral Cruise				
	T	5	CuS Corridor				
	I	6	Copper China Corridor				
•	T	7	Green Cupper Europe				
	T	8	Car Import from Japan				
-	T	9	Agri/Aqua Culture Corridor				
	Ι	10	ContainEurope				
	T	11	CircumSouthAmericas				
	T	12	Ammonia Exp Japan				
	I	13	Ammonia Exp Rotterdam				
	T	14	Ammonia Exp Los Angeles				
	I	15	Ammonia Exp Singapore				
	D	16	Austral Fish/Aqua				
	D	17	Tug/service				
	D/I	18	H ₂ SO ₄ Carrier for mining				

ET PARO

Illustrate all proposed corridors

- Illustrating the proposed corridors is critical for the dialogue amongst stakeholders
- Type/design of maps for illustration is not critical. Can be real maps or sketches
- Important factors to include
 - o Ports of relevance
 - o Indicative route
 - o Vessel segment
- Map can either cover subset of 1st Suite corridors or all proposed corridors
- If suite includes both domestic and international corridors, then it is recommended to develop more maps, to allow for the details to be covered

Illustrate all proposed corridors - Example of AUS-NZ

(

EX-PAIDE

7N. Consortium incubation workshop (CIW)

- Move from 1st Suite Corridors to 1st Wave Corridors.
- Initiate Consortium Incubation Workshop with relevant stakeholders throughout the value chain in defined area to get their buy-in from relevant stakeholders.
- Expected outcomes of the CIW are that potential green corridors are identified and stake holders adequately committed to start Feasibility Scoping phase.

Key questions

- Which corridors have most strategic/commercial interest?
- Which relevant stakeholders throughout the value chain are interested / committed to working on the preferred green corridors?

Importance

- The CIW results serve as input for the selection of 1st Wave corridors.
- Indication of **potential consortia** and committed/ interested **stakeholders**.
- The CIW unites relevant stakeholders along the value chain to discuss the 1st Suite of green corridors and provide input on which of these have potential to become 1st Wave corridors.
- It also offers the chance for interested stakeholders to initiate contact with each other to form a consortium for driving the Feasibility Study of each of the corridors.

7N. Consortium incubation workshop (CIW)

Proposed work

- I. Identify relevant participants for the Consortium Incubation Workshop (CIW) and prepare material (report, workshop agenda, etc.).
- II. Conduct CIW and present results as well as identify relevant stakeholders for the upcoming Feasibility phase.
- III. Describe 1st Wave Corridors including a preliminary Scenario Modelling
- IV. Communicate the results of the Pre-Feasibility Study in accordance with planned communication strategy.

The Consortium Incubation Workshop preparation

Key workshop activities: the activities may vary based on the project

+

Week-20to-10	Week-10to-8	Week-8 to-4	Week-2 to-1	Consortium incubation workshop	Week+1to+2	Þ
 Set date for CIW in early part of project (3-6 months in advance of workshops) to secure the venue and ensure availability of stakeholders. Set an agenda for the workshop. 	 Identify potential participants (e.g., contributors to Pre- Feasibility, region- specific or project- specific organizations) and secure the venue. 	 Send invitations for the workshop with detailed agenda at least 8 weeks before the workshop. Prepare presentation to be given Send out pre-read 	 Confirm list of participants and coordinate with venue regarding seating arrangement, audio and video equipment, stationery, charts, stands, etc. Print posters of key figures from study, including maps of corridors. Prepare online voting form. 	 Present methodology used and findings. Hang posters on walls. Add more corridors to 1st Suite if needed. Conduct Prioritization Exercise. Document results using the online form. Prepare the online form, so that decided 1st Wave Corridors can be inserted during break at CIW. Conduct Commitment Level Exercise. 	 Send workshop material to CIW participants. Synthesize outcomes and share with participants. Incorporate workshop results in final report. 	End of Pre-Feasibility Study Phase

²⁾ According to the MMMCZCS Consortium & Governance Methodology
Participants invitation process to the Consortium Incubation Workshop

Pre-Feasibility Suite of Corridors	Project Lead makes shortlist of stakeholders for CIW	Chapter 6 Participants add to shortlist where needed	Combined Invitation List is compiled by Project Lead	Invitations are sent by Project Lead
Possible consortium members are suggested for each identified corridor. May be a very long list of all possible stakeholders.	Project Lead identifies stakeholders appearing in several corridors and/or stakeholders who are fundamental for enabling the establishment of green corridors project.	Chapter 6 participants review the initial shortlist, and add to this if Project Lead has not seen all relevant stakeholders in the first process.	Project Lead compiles the total list of all stakeholders to be invited.	Project Lead sends invitations to the workshop to stakeholders. Each stakeholder can have up to three participants. Invitations include pre-read on CIW methodology, venue, timing, RSVP, etc.

The Consortium Incubation Workshop includes 3 main elements

Presentation

Present findings from study work and 1st Suite corridors.

Prioritization Exercise

Which of the green corridors identified from the decision criteria in the study are most interesting?

"Let the games begin"

Commitment level Exercise

Discuss the corridors with highest interest and commitment level in more detail.

Presentation: Example workshop presentation structure – to be adjusted for each workshop

Introduction and context

- Welcome and safety
- Why are you invited?
- Intro to Pre-Feasibility
 Methodology
- Consortium Incubation Workshop

Key findings from Pre-Feasibility Study and 1st Suite Green Corridors

- Methodology of Pre-Feasibility
- Energy & Fuels
- Ports & Bunkering
- Trade, cargo, and vessels
- Regulatory environment and Just
 & Equitable
- Selection Criteria
- 1st Suite Corridors

Next phase What could move into Feasibility

- Feasibility Methodology
- Prioritization Exercise
- 1st Wave Corridors
- Commitment level Exercise

Prioritization exercise template

Follow the QR code and the subsequent instruction

- 1. Fill-in Name & Affiliation
 - Two (2) from each entity
- 2. Vote for up to X (X) corridors where you want to commit your resources for the Feasibility phase
- 3. Submit your input

3. In the following section, you are kindly asked to vote for the X corridors where you see your organization being ready to invest hours and data in maturing the work through Feasibility, in line with the principles of the MMMCZCS Methodology.

Dedicated insight needed for the suite of corridors

Please select X options.

- 1. Direct calling between ROK Ports* and US Ports* on shipping string for Container carrier on e-/biomethanol as fuel from 2028.
- 2. Direct calling between ROK Ports* and US Ports* on shipping string for Container carrier on green-/blueammonia as fuel from 2033.
- 3. Any ports calling between ROF fuel from 2028.
 - 4. Any ports calling between ROP as fuel from 2033.
 - 5. Any ports calling between ROk using as early as possible.

ontainer carriers and e-/biomethanol as

ontainer carriers and green/blue ammonia

nd any type of clean fuel, which can start

6. Any ports calling between ROK--- and US--- on snipping string for PCTC and any clean fuel from 2028.

7. Any ports calling between ROK** and US** on shipping string for PCTC and green/blue ammonia as fuel as early as possible.

8. Any ports calling between ROK** and US** for a new business not currently part of an existing business model. Could be related to the green transition.

Other

Prioritization exercise - Example

Forms[®] voting results

- Using an app-based form for the voting ensures that all participants – in-person attendees and online ones can participate.
- The voting results can be easily and quickly shown at the workshop.
- All participants must fill in the app-based form
- It is optional/voluntary if the exercise also has a physical version (sticker exercise) which can only be run in the meeting room.
- In the sticker exercise, the participants vote by placing colorful stickers with their initials next to the names of the projects they prioritize
- Examples of both types of voting are below.

LOC.	ID	Ref to Pre-Feasibility Repo	rt Short deside
D	1	Corridor 11.1.1	Chilean Powerolast Amo
D	2	Corridor 11.1.2	Chilean Mining Exploringer Am
D	3	Corridor 11.2.1	Austral Ferries
D	4	Corridor 11.2.2	Austral Cruise
1	5	Corridor 11.3.1	CuS Corridor
1	6	Corridor 11.3.2 🛞	Copper China Corridor
I.	7	Corridor 11.3.3	Green Cupper Europe
1	8	Corridor 11.3.4	Car Import from Japan
1	9	Corridor 11.3.5	Agri/Aqua Culture Corridor
1	10	Corridor 11.4.1	ContainEurope
1	11	Corridor 11.4.2	CircumSouthAmericas
1	12	Corridor 11.5.1	Ammonia Exp Japan 🛞 🌒 🔊 🖗
I	13	Corridor 11.5.2	Ammonia Exp Rotterdam 💮 💰 💰
1	14	Corridor 11.5.3	Ammonia Exp Los Angeles
1	15	Corridor 11.5.4	Ammonia Exp Singapore 🐨 🛛 🌚 🔍
D	16	Corridor 11.6.1	Austral Fish/Aqua 🛛 🔴
D	17	Corridor 11.6.2	Tug/service 👔 🌒
D/1	18	Corridor 11.6.3	H ₂ SO ₄ Carrier for mining a

Sticker exercise Workshop results

Prioritization Exercise – Analysis of results

 \rightarrow

Example

1. Document workshop results

oc.	ID	Ref to Pre-Feasibility Repo	rt Show do
D	1	Corridor 11.1.1	Chilean Powereleat
D	2	Corridor 11.1.2	Chilean Minice Such
D	3	Corridor 11.2.1	Austral Familie Explosives Ammon
D	4	Corridor 11.2.2	Austral Cruiss
1	5	Corridor 11.3.1	CuS Corridos
L	6	Corridor 11.3.2	Cooper Chips Carrido
I.	7	Corridor 11.3.3	Green Cunner Europa
1	8	Corridor 11.3.4	Car Import from Japan
1.	9	Corridor 11.3.5	Agri/Aqua Culture Corridos
1	10	Corridor 11.4.1	ContainEurope
1	11	Corridor 11.4.2	CircumSouthAmericas
1	12	Corridor 11.5.1	Ammonia Exp Japan 🛞 🌰 🐠
1	13	Corridor 11.5.2	Ammonia Exp Rotterdam 🛞 🔏
1	14	Corridor 11.5.3	Ammonia Exp Los Angeles
1	15	Corridor 11.5.4	Ammonia Exp Singapore 🐨 🛛 😞 🔍
D	16	Corridor 11.6.1	Austral Fish/Agua
D	17	Corridor 11.6.2	Tug/service 🌒 🌒 🖲
D/1	18	Corridor 11.6.3	H ₂ SO ₄ Carrier for mining

2. Identify corridors with most stickers and derive focus corridors for the Feasibility phase and the Coffee Table Exercise

ET PLIDE

Loc.	ID	Short description	Number of stickers		
I	6	Copper China Corridor	9		
I	13	Ammonia Exp Rotterdam	9		4 focus corridors
I	12	Ammonia Exp Japan	8		Coppor Corridor
I	15	Ammonia Exp Singapore	7		
D	17	Tug/service	6		Annonia Exp
I	7	Green Copper Europe	5		H2SO4 Comuon
D/I	18	H2SO4 Carrier for mining	5		Tug/service
	5	CuS Corridor	4		
	9	Agri/Aqua Culture Corridor	3		
	8	Car Import from Japan	2	12	
	10	ContainEurope	2	10	
	11	CircumSouthAmericas	2	8	
D	1	Chilean Powerplant Ammonia	1	6	
D	2	Chilean Mining Explosives Ammonia	1	4	
	14	Ammonia Exp Los Angeles	1	2	
D	16	Austral Fish/Aqua	1	0	
D	3	Austral Ferries	0		
D	4	Austral Cruise	0		

During the CIW, participants can suggest new corridors to the list. These new corridors are subsequently also up for selection as one of the focus corridors

Commitment level exercise

Objectives and way forward

- Gather a variety of perspectives and insights to enrich ۰ discussions.
- Gain a deeper understanding of participants' priorities, • preferences and especially, commitment to work hours for next phase.
- Solicit feedback on both advantages and challenges to informed • decision-making.
- Engage individuals in discussions to cultivate a spirit of • collaboration and commitment. Taking into account diverse opinions is crucial for acknowledging cultural and contextual differences.
- Delve into the rationale behind the final corridor selection, enabling • a more comprehensive understanding.
- Identify, on an informed basis, the Green Corridors (GC) with the • potential to be advanced successfully.

For each 1st Wave green corridor, participants will be requested to complete a form and answer the following questions within 15 minutes:

- Where does this corridor exhibit advantages? ٠
- What challenges are associated with this corridor? ٠
- Any additional comments? •
- 050 Gauge my organization's commitment to this corrid
 - Workstream lead (hrs)
 - Workstream support (hrs)
 - Sounding board member (hrs)
- Responses will be accessible through an app-based form, and a • subsequent plenary session will be dedicated to the 1st Wave corridors (e.g. 15 minutes per corridor) and to other corridors if needed.

SAMPLE

Commitment level exercise instructions

70. Scenario assessment: CO₂ and Cost / Just & Equitable

- Reference point for initial view on incremental cost of green for consortium members.
- CO₂eq emission and fuel consumption (Table 6.3): After picking the most promising corridors, these calculations will add even more detail and strengthen the basis for further decisions.
- Input to Corridor Project Baselining, including the residual cost gap analysis, in Feasibility phase.
- The output of the scenario assessment provides project members with an initial understanding of
 - A : Amount of abated CO₂
 - B: Incremental cost
 - C: Just & Equitable assessment

Key questions

$A: CO_2$

- What are the CO₂eq emissions and how much fuel is needed in the relevant corridors?
- What is the expected level of abated CO₂?

B:Cost

- What is the first cost estimate of abated CO₂?
- What is the estimated incremental cost of green?

C : Just & Equitable

 What are the key socio-economic risks and opportunities and derived implications associated with the areas identified for 1st Wave green corridors?

Importance

A:CO₂

- Get an initial understanding of amount of abated CO2.
- These initial estimates give an important indication and allow stakeholders to understand if the corridor is likely to be impactful in terms of CO₂ abatement, cost effectiveness, technological enabling, etc.

B:Cost

 An initial understanding of the incremental cost, cost impact on cargo, and cost of abated CO₂ is important for the communication regarding the project in Pre-Feasibility.

C: Just & Equitable

• To ensure that a green corridor is created in a Just & Equitable way, it is crucial to extend considerations beyond the above and consider the socio-economic opportunities and risks.

CO₂ abatement potential of the green corridor provides preliminary insight

The tool, developed by the center, is a highly configurable, automated Excel-based tool designed to integrate a broad range of parameters, including fuel types, vessel types, operating profiles, and CO_2 emissions. Its primary function is to provide detailed insights into the costs and CO_2 abatement potential of specific maritime corridors. By allowing users to adjust inputs tailored to the specifics of a given corridor, the tool dynamically generates automated graphs and visuals.

These visual outputs offer a comprehensive analysis of several key metrics including the incremental cost of adopting green fuels over traditional fuels

Tool is available at XXX

A. CO_2 abatement potential of the green corridor provides preliminary insight

Adjust the input to the Green Corridor Scenario Modeling tool according to the corridor's specifics and initial assumptions from the project team

Review output in the tool (table and graphs): CO_2 abatement potential in the area

Re-adjust input to the model as the project team generates more knowledge and insights

B. The cost and scenario assessment provides further insights on the incremental cost of green for the green corridor

Adjust the input to the **Green Corridor Scenario Modeling tool** according to the corridor's specifics and initial assumptions from the project team

Review output in the tool (table and graphs): Incremental cost of green in the area

Re-adjust input to the model as the project team generates more knowledge and insights

C: J&E assessment within scenario assessment (70)

This exercise is essentially a repetition of the work done on the focus area in Workstream 5. As explained in 5.2, the objective of the J&E assessment is to create awareness about the socio-economic risks and opportunities for the countries or regions included in each of the 1st Wave of green corridors. Additionally, the assessment can be used as input for the final prioritization of 1st Wave corridors.

The J&E assessment in this section covers only those countries/regions/ports that are included in 1st Wave corridors beyond the focus area.

If all 1st Wave corridors are domestic and hence covered by the analysis done in 5.2.1, then consider if additional analysis is needed at a regional or local level (Table 5.2.2).

Summary of steps necessary (consult the relevant slides in Section 5)

- 1. Assess the level of detail required, by confirming the list of countries/regions/ports.
- 2. Revisit the questions in Section 5 and data collection template.
- 3. Collect data in accordance with the questions.
- 4. Reflect on the implications for the identified 1st Wave corridor projects

7P. Commitment assessment

Purpose

- Evaluate key stakeholders' extent of commitment for the proposed Green Corridors.
- Identify viable corridors with substantial commitment through the value chain, providing a foundation for progressing to the Feasibility phase.
- **Optimize resource** allocation by efficiently focusing on corridors where there is genuine stakeholder support.

Key questions

- How extensively have stakeholders been engaged, and what is their level of commitment, interest and enthusiasm for the 1st Wave corridors?
- What non-financial resources are stakeholders willing to commit to the further development of the 1st Suite corridors?
- To what extent do the proposed Green Corridors align with the strategic objectives and priorities of the involved parties?
- What potential **risks** may hinder commitment, and what **mitigation** strategies can be employed?

Importance

- Acts as a **strategic filter**, guiding decisionmakers toward corridors with genuine stakeholder support.
- Minimizes wasted efforts by efficiently directing resources to corridors with the highest likelihood of success.
- Ensures that development efforts **align with stakeholder priorities** and fit within long-term plans.

The Commitment Level is assessed through a 4-step approach, starting at the CIW

Commitment Level	At Consortium Inc	cubation Workshop ²⁰⁾	After Consortium Incub	ation Workshop
The 1 st Wave Corridors are prone to be moved into feasibility maturation phase.	Present corridor and high-level requirements for Feasibility Phase	Receive indicative commitment from participants at CIW	Assess if commitment level is sufficient for next phase: value chain coverage, hours, etc	Report back on Commitment Level findings and impact on corridor progression
In order to ensure that this phase is as successful as possible, it is crucial that the stakeholders participating in the project are the right ones for the project. Commercial parties, with insight into their part of the value chain, need to be committed to carry out the feasibility maturation.	1 st Wave Corridors are presented at the CIW following the Prioritization Exercise. The requirements for the Feasibility Phase are explained, including expected manhours.	Perform Commitment Level Exercise at CIW. Workstream Lead: 1,000 hrs Workstream Support: 500 hrs Sounding Board: 50 hours Critical that participants understand the importance and impact of their input.	Is value chain covered for the corridor after the Commitment Level Exercise? Do the key areas: • Alternative Fuel • Ports • Vessel • Cargo have deep commitment? Have commercial companies indicated their interest in leading the workstreams in the next phase?	 Based on the commitment level, it is decided which corridors can be further matured. There is no single number or black/white decision. Future consortium has to decide if the commitment level is adequate to achieve the outcome of the Feasibility Phase.

IFY PANDLE

Project Commitment Level Assessment - Internal MMMCZCS process

Guiding principles for MMMCZCS to participate as Project Lead in Feasibility

Commercial companies are leading Workstream 2, 3 and 4. Each have committed to ~1,000 hrs of work in the Feasibility Phase. Each workstream can only have one commercial lead; Center partners and companies with decarbonization strategies will be preferred. Workstream lead can decide if support is needed, and from whom

Initial Corridor list, additions, prioritization and commitment throughout the last part of the Pre-Feasibility Study

Commitment Level impact on corridors

Addition to 1st Suite at the CIW Corridor status 1st Suite based on data Corridors with Corridors prioritized at the CIW During the Pre-Feasibility Study commitment phase, a number of corridors are Move forward identified based on the data and Pause selection criteria = 1st Suite. Move forward At the CIW, additional corridors can be added to the 1st Suite. Corridors are prioritized at the CIW. The corridors with largest Pause interest are assessed for stakeholder commitment. The final status of all corridors is reported.

7Q. Final report

Purpose

- The final report serves to enhance accessibility and comprehension of the overall content for the intended audience.
- Distribution will especially encompass all chapter leads and other pertinent participants, ensuring widespread dissemination.
- Key components of the final report include:
 - An executive summary of the Pre-Feasibility Study (around X pages)
 - Findings from various assessment stages across dimensions such as Fuels, Trade, Cargo, Routes, Vessels, Regulation, and Just & Equitable
 - Furthermore, the final report enhances information regarding the 1st Wave of corridors, specifically in the assessment of CO2 abatement, Cost, and Just & Equitable considerations.
 - A concise summary of the Consortium Incubation Workshop (CIW), with the complete CIW report available in the Appendix.
 - Next steps, recommended course of action.

Importance

- This report furnishes a comprehensive overview of the accomplished work, thereby showcasing how the work aligns with the initial project goals.
- The final report is for internal project use only and the responsibilities for the content lies with the individual workstreams.
- The final report is not supposed to be 'proof-edited' by the overall project lead.
- Recommendations:
 - Use clear headings, subheadings, and numbering to improve readability.
 - Provide citations and references for any external sources, especially in technical discussions.
 - Ensure that the report adheres to any specific formatting or style guidelines required by your organization or industry.

Final Report Standards and Expected Deliverables

Congratulations!

You have successfully completed the Pre-Feasibility Study for your green corridors project.

Together with all project stakeholders, you navigated various steps and utilized our specialized tools to finalize a shortlist of potential green corridors.

This effort has provided initial estimates for CO_2 abatement potential and incremental costs of going green. It has ensured a Just & Equitable assessment for each shortlisted corridor.

What comes next?

Now, it is time to move to the Feasibility phase.

Click here to access the guidance and resources you need for the next steps in your green corridor project: Feasibility Scoping and Feasibility Study.

Disclaimer

This Methodology is provided "as is" without any warranty of any kind, express or implied, including but not limited to merchantability, accuracy, completeness, or fitness for a particular purpose. Any reliance you place on this Methodology is strictly at your own risk.

While every effort has been made to ensure the accuracy and effectiveness of the content, Fonden Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping shall not be liable for any errors or omissions in the content, nor for any loss or damage arising from the use of the Methodology.

Appendix

 \bigcap

Appendix

- 5H : Alternative fuels, timing, capacity, emission and cost / Additional recommendations
- 5I : Port, storage and bunkering infrastructure / Additional recommendations
- 5J : Cargo & Services, vessels & routes / Additional recommendations
- 5K : Regulation, Just & Equitable / Additional recommendations
- The Green Corridor Scenario Modeling tool
- Configurator, allowing users to configure the model to fit the selected green corridor's specifics
- Fuel configuration (1/2) Different fuel type selection to be compared to the fossil-fuel baseline
- Fuel configuration (2/2) Granular and robust data set including multiple bunker fuels
- The summary table provides a detailed overview of the methodology behind the three main output graphs
- Variety of other graphs providing a more nuanced overview
- Examination of simple ways to close the cost gap through a carbon price or willingness-to-pay
- Example of Green Corridors List

5H : Alternative fuels, timing, capacity, emission and cost

Additional recommendations

- I. Communicate with stakeholders, including ports and shipping companies, to identify alternative fuels.
- II. Clearly communicate production outlook and delivery of alternative fuels.

51: Port, storage and bunkering infrastructure

Additional recommendations

- I. Use port readiness assessment to enable green projects and corridors.
- II. Actas a catalyst between fuel producers, shipping companies, and cargo owners to realize green corridors.
- III. Share knowledge with other ports to solve challenges, identify opportunities, and develop common safety procedures.
- IV. Consider providing **discounts as incentives** to first movers for using green fuels.
- V. Recognize that getting ready for new fuels early can be a competitive advantage that provides growth opportunities.

5J: Cargo & Services, vessels & routes

Additional recommendations

- I. Aim to find key customers who have a pledge to decarbonize their transport and may be willing to pay for green transport.
- II. Investigate options with other stakeholders, including ports and fuel producers.
- III. If relying on electricity to decarbonize, then consider where you will get the green energy from.

5K : Regulation, Just & equitable

Additional recommendations

- I. Regulatory: provide clear regulation for using alternative fuels, to make implementation easier.
- II. Regulatory: develop regulation that provides financial incentive to decarbonize and reward first movers.
- III. Politicians: develop support schemes and provide funding for first movers.
- IV. Politicians: support green corridor projects to prove they are possible, then push for regulation to encourage alternative fuel adoption.
- V. Defined areas: build your awareness of different kinds of fuels and how to handle them, to prepare the **social readiness and acceptance**.
- V. Defined areas: recognize that readiness for new fuels early can be turned into a competitive advantage that could provide growth opportunities in the area.

The Green Corridor Scenario Modeling tool is a configurable, automated Excel tool that provides insights on costs and CO_2 abatement potential of a corridor

How to use the tool

! For now, the tool has a range of limitations:

- In the output table (SummaryTable), electricity and fossil fuel costs are considered OPEX only
- Lost cargo space from larger fuel tanks. Currently, the model assumes same size fuel tanks
- Electrical and heat energy demand assumed constant no matter the operational profile to simplify vessel calculation
- Port costs are hardcoded for now. This can be changed in 'CorridorCalculation' in rows 64-65

Configurator: This sheet allows users to configure the model to fit the selected green corridor's specifics

Input values

Α

Only red cells should be adjusted by the user – some of the cells have a drop-down menu that opens when clicking on the cell.

Override function (optional)

The red cells in this column can be used to override the values to their left if needed.

Output

В

The graphs provide the following output:

- Incremental cost of green by alternative fuel type, split into transport and cargo.
- 2. Total cost by alternative fuel type, split into vessel, port, fuel, emissions.
- 3. Emissions compared to fossil-fuel baseline by alternative fuel type.

A. Input values: Fuel configuration – The user can select different fuel types and compare them to the fossil fuel baseline

Fuel configuration

	В	С	D	E	F	G	Н	
Fuel configu	Iration	Unit	Option 1	Option 2	Option 3	Option 4	Baseline	Option 1 doop ho
Main fuel		-	Blue ammonia (CCS)	e-ammonia	Bio-methanol	e-methanol (DAC)	LSFO	Option 1-4 can be
Main fuel typ	e	-	Ammonia	Ammonia	Methanol	Methanol	Diesel	auctomized by the user by
Vessel types	for fuel	-	DF Ammonia	DF Ammonia	DF Methanol	DF Methanol	MF Diesel	Customized by the user by
Pilot fuel		-	LSFO	LSFO	LSFO	LSFO	LSFO	adjusting the red cells. The
Corridor cor	nfiguration	Unit	Value	Override				white cells in rows 5-6 are
Bunker regio	n	-	Europe					
Year		-	2025					automatically filled based o
Vessel segm	ent	-	Container					· · · · · · · · · · · · · · · · · · ·
Vessel size		-	8000 TEU					input in row 4.
Number of ve	essels	-	10					
Lifetime of co	orridor	Years	25					The Decelling in a shore LL
Average ves	sel speed	Knots	18					i ne Baseline in column H
Cargo per ve	essel	TEU	8,000					includes the standard face
Cargo value		USD/TEU	50,000					includes the standard ross
Distance for	one roundtrip	Nautical miles	20,000					fuole as a comparison
Days at sea		Days	240					rueis as a companson.
Number of ro	undtrips per year	-	5.2					
Cargo utilizat	tion	%	65%					

See the FuelAssumptions sheet for fuel data (see example on next page)

◆)

A. Input values: Fuel configuration – The model is backed up by a granular and robust data set which includes multiple bunker fuels

Granularity of data - selected elements (exemplary)

Bunkerfuels	
e-hydrogen (liquefied)	Yearly data points for e-hydrogen (liquefied) for the following parameters:
• e-hydrogen (compressed)	CapEx (Global)
e-ammoniae-methanol (DAC)	OpEx (Africa)
• e-methanol (PS)	OpEx (Americas)
 e-methane liquefied (DAC) e-methane liquefied (PS) e-diesel (DAC) 	 OpEx (Asia) OpEx (Europe)
e-diesel (PS)Blue ammonia (CCS)	 OpEx (Middle East)
Bio-methanolBio-methane (liquefied)	 Total emissions – WTT – GWP100 (Global)
 Bio-diesel (HTL) Bio-diesel (Durahusia) 	 Total emissions – TTW – GWP100 (Global)
Bio-diesei (Pyrolysis)LNG	 Total emissions – WTW – GWP100 (Global)
• SF0	

A. Input values: Corridor configuration – Users can adjust multiple parameters to ensure the data model matches the specific corridor's characteristics

Corridor configuration

4	В	С	D	E	F	G	Н	
1								
2	Fuel configuration	Unit	Option 1	Option 2	Option 3	Option 4	Baseline	
4	Main fuel	-	Blue ammonia (CCS)	e-ammonia	Bio-methanol	e-methanol (DAC)		
5	Main fuel type	-	Ammonia	Ammonia	Methanol	Methanol		
6	Vessel types for fuel	-	DF Ammonia	DF Ammonia	DF Methanol		NUT INC. I	
7	Pilot fuel	-	LSFO	LSFO	LSFO			
8						Customizatho	o corridor cor	figuration by adjusting the rod colle
9	Corridor configuration	Unit	Value	Override		Customizethe		ingulation by aujusting the red cens.
10	Bunker region	-	Europe					
11	Year	-	2025			Thewhitecelle	s are automa	tically filled based on input on the
12	Vessel segment	-	Container		$<$		Juicuutoniu	doally miled based of milpar of the
13	Vessel size	-	8000 TEU			vessel segmer	nt and size. T	hevare based on assumptions from
14	Number of vessels	-	10					
15	Lifetime of corridor	Years	25			the underlying	data model, l	but can be adjusted using the override
16	Average vessel speed	Knots	18			function in a l	· · · · · · · · · · · · · · · · · · ·	.
17	Cargo per vessel	TEU	8,000			TUNCTION IN COIL	UMN E.	
18	Cargo value	USD/TEU	50,000					
19	Distance for one roundtrip	Nautical miles	20,000			Licinatho avo	rrido function	vic only recommended when the upor
20	Days at sea	Days	240			Usingtheover	nuerunction	ns only recommended when the user
21	Number of roundtrips per year	-	5.2			hasvonusnoci	ific and dotai	lad knowladge of the vessel in the
22	Cargo utilization	%	65%			Thas very speci	inc and detai	ieu niowieuge of the vessenin the
23						specific corrid	or	
24						opeonie cenia	011	
25								
26								
27								
-	Configurator SummaryTable	e SummaryGraphs No	otes CorridorCalculation	VesselCalculation V	/esselAssumptions Fu	elAssumptions Index Cal	cul (+) : 🚺	

See the VesselAssumptions sheet for fuel data (see example on next page)

A. Input values: Corridor configuration – The model is backed up by a granular and robust data set which includes multiple vessel types

Granularity of data - selected elements (exemplary)

/essels	
Container (3500 TEU)	Yearly data points for Container vessels (3500 TEU) for the following parameters:
Container (8000 TEU)	Nominal capacity
Container (15000 TEU)	
Bulk carrier (Handy)	Days at sea
Bulk carrier (Panamax)	Average speed
Bulk carrier (Capesize)	- Average speed
Tanker (35k dwt)	Main engine thermal efficiency - MF Diesel
Tanker (100k dwt)	 Main engine thermal efficiency - DF Methane
Tanker (300k dwt)	
RoRo (4000 CEU)	Main engine thermal efficiency - DF Methanol
RoRo (7000 CEU)	Main angina thormal officianay DE Ammonia
Gas Carrier	
Cruise (25k GT)	Main engine pilot fuel share - MF Diesel
	Main anging pilot fuel share DE Mathana
Cruise (175K GT)	
Fast Ferry	Main engine pilot fuel share - DF Methanol
Ferry Caparal Cargo	
Offeboro	Main engine pilot ruei share - DF Ammonia
Tug	

B. Output: The summary table provides a detailed overview of the methodology behind the three main output graphs

2

3

X 3 main output graphs

Key graphical output

Summary table sheet providing methodology behind output

A		В		С	D	E		F	G		Н	
1												
2	Main tuei				LSFO	lue ammonia (CCS	e-ammonia	Bio-methar	ol (e-methanol (DAC	
3	Cost summary Unit			Baseline	Option 1		Option 2	Option 3		Option 4		
4	Total vessel CAPEX U		USD	n	1,000	1,3	300	1,300	1,2	00	1,200	
5	Total vessel OPEX		USD	Dm 790		8	340	840	8	30	830	
6	Total port (CAPEX	USD	n	-		-	-		-		
7	Total port (OPEX	USD	n	-		-	-		-		
8	Total fuel (CAPEX	USD	n	-	8	340	1,900	1,9	00	2,900	
9	Total fuel (OPEX	USD	n	4,400	11,2	200	12,600	8,6	00	18,000	
10	Total emiss	sions cost	USD	n	-		-	-		-		
11	Total vess	sel cost	USD	n	1,790	2,1	140	2,140	2,0	30	2,030	
12	Total port	cost	USD	n	-		1.0			-		
13	Total fuel	cost	USD	n	4,400	12,0	040	14,500	10,5	00	20,90	
14	Total emis	ssions cost	USD	n	-					-		
15-0	Total corri	idor cost	USD	n	6,190	14,1	180	16,640	12,5	30	22,93	
16	Increment	tal cost of gre	t of green USDm		-	7,990	990	0 10,450	6,3	40	16,740	
17												
18	Main fuel				LSFO	lue ammonia (CCS	e-ammonia	Bio-methar	ol	e-methanol (DAC	
19	Emissions	s summary	Unit	Unit Base		Option 1 Option 2		Option 2	Option 3		Option 4	
20	Total emis	ssions for the	corridor tCO2	eq	1,067,900	346,3	300	173,500	110,5	00	160,300	
21	Emissions	s reductions	reductions tCO2eq		-	721,6	500	0 894,400	957,4	00	907,600	
22	CO2eq ab	atement cost	USD	n/tCO2e	- p	440		470	260		740	
23	Emissions	compared to ba	aseline % reg	duction	100%	, 3	32%	16%	i 1	0%	159	
24	Main fuol				L SEO	luo ammonia (005	o ammonia	Rio-mothan			
26	Cargo sun	nman/	Unit		Basolino	Option 1	000	Option 2	Ontion 3	01	Ontion 4	
27	Cargo valu			TELL	50000	Option 1	000	5000) 50/	000	5000	
28	Transport			TELL	30000	, 50 N 2	100	2500) 10	200	340	
29	Baseline tr	ansport cost		TELL	930	2	930	200		330	340	
30	Incrementa	anoport cost	ort per ci USDi	TELL	930	, \ 1	200	150	, :	330	250	
31	Total cost	of cargo		TEU	50900	, I N 52	100	5250	, :) 510	200	5340	
32	Increment	tal cost of tran	sport % pr	amium	50500	12	100	170%	, JI	n%	2700	
33	Increment	tal cost of car	10 % pr	emium	-	13	2%	3%	, 10	2%	210	
34		Jeer er our	- ,a pi				- /0	0,		- /0		
67												
88												
	Configurator	SummaryTable	SummaryGraphs	Notes	CorridorCalculation	VesselCalculation	VesselA	Assumptions Fu	elAssumptions	Index	CalculationsForGr	
B. Output: In addition to the 3 main output graphs, there are a variety of other graphs providing a more nuanced overview

Full graphical output

3 main output graphs

C. Goal seeking: Examine simple ways to close the cost gap through a carbon price or willingness-to-pay

Goal seeking

Example of Green Corridors List

C/No.	Corridor Name	Map No.
A1	Ro-Pax Melbourne–Tasmania	3
A2	Auckland Ferry	4
A3	Picton-Wellington Ferry	4
B1	Weipa Ro-Ro	3
B2	Geelong/Devonport Ro-Ro	3
C1	Pure Car Truck Carrier(JPN–AU–NZ)	1
C2	Pure Car Truck Carrier (EU–AU–NZ–JPN)	1
D1	Gladstone Bauxite	3
D2	Gladstone-Bluff Alumina	2
D3	Adelaide-Melbourne Cement	3
D4	Gladstone-Newcastle Alumina/ Cement	3
D5	New Zealand Cement	4
E1	Gladstone Coal	1

C/No.	Corridor Name	Map No.
E2	New Zealand Timber	1
E3	Agriculture Corridor	1
F1	Sydney Cruise Line	3
F2	Eco-Tourism (Great Barrier Reef)	3
F3	New Zealand Cruise Line	4
G1	Gladstone–Newcastle NH3 Carrier	3
G2	NH3 Export to Asia	1
H1	Sydney Container	1
H2	Melbourne Container	1
11	New Zealand Feeder Container	4
12	Botany Bay–Melbourne Container	2
J1	Geelong-Melbourne small tanker	3
K1	Tug/service	3

International

Visit our website for more: www.zerocarbonshipping.com

The consortium formation

Adjustment ends when there are no more gaps identified.